Cargando…
Disentangling time series between brain tissues improves fMRI data quality using a time-dependent deep neural network
Functional MRI (fMRI) is a prominent imaging technique to probe brain function, however, a substantial proportion of noise from multiple sources influences the reliability and reproducibility of fMRI data analysis and limits its clinical applications. Extensive effort has been devoted to improving f...
Autores principales: | Yang, Zhengshi, Zhuang, Xiaowei, Sreenivasan, Karthik, Mishra, Virendra, Cordes, Dietmar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7792822/ https://www.ncbi.nlm.nih.gov/pubmed/32898682 http://dx.doi.org/10.1016/j.neuroimage.2020.117340 |
Ejemplares similares
-
Energy-Period Profiles of Brain Networks in Group fMRI Resting-State Data: A Comparison of Empirical Mode Decomposition With the Short-Time Fourier Transform and the Discrete Wavelet Transform
por: Cordes, Dietmar, et al.
Publicado: (2021) -
Robust Motion Regression of Resting-State Data Using a Convolutional Neural Network Model
por: Yang, Zhengshi, et al.
Publicado: (2019) -
Single-scale time-dependent window-sizes in sliding-window dynamic functional connectivity analysis: A validation study
por: Zhuang, Xiaowei, et al.
Publicado: (2020) -
Performing Sparse Regularization and Dimension Reduction Simultaneously in Multimodal Data Fusion
por: Yang, Zhengshi, et al.
Publicado: (2019) -
Investigating structural and perfusion deficits due to repeated head trauma in active professional fighters
por: Mishra, Virendra, et al.
Publicado: (2017)