Cargando…
Experimental Analysis of Perimeter Shear Strength of Composite Sandwich Structures
The work concerns the experimental analysis of the process of destruction of sandwich structures as a result of circumferential shearing. The aim of the research was to determine the differences that occur in the destruction mechanism of such structures depending on the thickness and material of the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7792930/ https://www.ncbi.nlm.nih.gov/pubmed/33375168 http://dx.doi.org/10.3390/ma14010012 |
_version_ | 1783633886357487616 |
---|---|
author | Święch, Łukasz Kołodziejczyk, Radosław Stącel, Natalia |
author_facet | Święch, Łukasz Kołodziejczyk, Radosław Stącel, Natalia |
author_sort | Święch, Łukasz |
collection | PubMed |
description | The work concerns the experimental analysis of the process of destruction of sandwich structures as a result of circumferential shearing. The aim of the research was to determine the differences that occur in the destruction mechanism of such structures depending on the thickness and material of the core used. Specimens with a Rohacell foam core and a honeycomb core were made for the purposes of the research. The specimen destruction process was carried out in a static loading test with the use of a system introducing circumferential shear stress. The analysis of the tests results was made based on the load-displacement curves, the maximum load, and the energy absorbed by individual specimens. The tests indicated significant differences in the destruction mechanism of specimens with varied core material. The specimen with the honeycomb core was characterized by greater stiffness, which caused the damage to occur locally in the area subjected to the pressure of the punch. In specimens with the foam core, due to the lower stiffness of that core, the skins of the structure were bent, which additionally transfers compressive and tensile loads. This led to a higher maximum force that the specimens obtained at the time of destruction and greater energy absorption. |
format | Online Article Text |
id | pubmed-7792930 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77929302021-01-09 Experimental Analysis of Perimeter Shear Strength of Composite Sandwich Structures Święch, Łukasz Kołodziejczyk, Radosław Stącel, Natalia Materials (Basel) Article The work concerns the experimental analysis of the process of destruction of sandwich structures as a result of circumferential shearing. The aim of the research was to determine the differences that occur in the destruction mechanism of such structures depending on the thickness and material of the core used. Specimens with a Rohacell foam core and a honeycomb core were made for the purposes of the research. The specimen destruction process was carried out in a static loading test with the use of a system introducing circumferential shear stress. The analysis of the tests results was made based on the load-displacement curves, the maximum load, and the energy absorbed by individual specimens. The tests indicated significant differences in the destruction mechanism of specimens with varied core material. The specimen with the honeycomb core was characterized by greater stiffness, which caused the damage to occur locally in the area subjected to the pressure of the punch. In specimens with the foam core, due to the lower stiffness of that core, the skins of the structure were bent, which additionally transfers compressive and tensile loads. This led to a higher maximum force that the specimens obtained at the time of destruction and greater energy absorption. MDPI 2020-12-22 /pmc/articles/PMC7792930/ /pubmed/33375168 http://dx.doi.org/10.3390/ma14010012 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Święch, Łukasz Kołodziejczyk, Radosław Stącel, Natalia Experimental Analysis of Perimeter Shear Strength of Composite Sandwich Structures |
title | Experimental Analysis of Perimeter Shear Strength of Composite Sandwich Structures |
title_full | Experimental Analysis of Perimeter Shear Strength of Composite Sandwich Structures |
title_fullStr | Experimental Analysis of Perimeter Shear Strength of Composite Sandwich Structures |
title_full_unstemmed | Experimental Analysis of Perimeter Shear Strength of Composite Sandwich Structures |
title_short | Experimental Analysis of Perimeter Shear Strength of Composite Sandwich Structures |
title_sort | experimental analysis of perimeter shear strength of composite sandwich structures |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7792930/ https://www.ncbi.nlm.nih.gov/pubmed/33375168 http://dx.doi.org/10.3390/ma14010012 |
work_keys_str_mv | AT swiechłukasz experimentalanalysisofperimetershearstrengthofcompositesandwichstructures AT kołodziejczykradosław experimentalanalysisofperimetershearstrengthofcompositesandwichstructures AT stacelnatalia experimentalanalysisofperimetershearstrengthofcompositesandwichstructures |