Cargando…
Complex imaging of phase domains by deep neural networks
The reconstruction of a single-particle image from the modulus of its Fourier transform, by phase-retrieval methods, has been extensively applied in X-ray structural science. Particularly for strong-phase objects, such as the phase domains found inside crystals by Bragg coherent diffraction imaging...
Autores principales: | Wu, Longlong, Juhas, Pavol, Yoo, Shinjae, Robinson, Ian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7792998/ https://www.ncbi.nlm.nih.gov/pubmed/33520239 http://dx.doi.org/10.1107/S2052252520013780 |
Ejemplares similares
-
Automatic and Accurate Sleep Stage Classification via a Convolutional Deep Neural Network and Nanomembrane Electrodes
por: Kwon, Kangkyu, et al.
Publicado: (2022) -
Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images
por: Khosravi, Pegah, et al.
Publicado: (2017) -
Phase recovery and holographic image reconstruction using deep learning in neural networks
por: Rivenson, Yair, et al.
Publicado: (2018) -
A Medical Image Fusion Method Based on SIFT and Deep Convolutional Neural Network in the SIST Domain
por: Wang, Lei, et al.
Publicado: (2021) -
Image synthesis of effective atomic number images using a deep convolutional neural network-based generative adversarial network
por: Kawahara, Daisuke, et al.
Publicado: (2022)