Cargando…
Deep Neural Network Sleep Scoring Using Combined Motion and Heart Rate Variability Data
Background: Performance of wrist actigraphy in assessing sleep not only depends on the sensor technology of the actigraph hardware but also on the attributes of the interpretative algorithm (IA). The objective of our research was to improve assessment of sleep quality, relative to existing IAs, thro...
Autores principales: | Haghayegh, Shahab, Khoshnevis, Sepideh, Smolensky, Michael H., Diller, Kenneth R., Castriotta, Richard J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793092/ https://www.ncbi.nlm.nih.gov/pubmed/33374527 http://dx.doi.org/10.3390/s21010025 |
Ejemplares similares
-
Accuracy of Wristband Fitbit Models in Assessing Sleep: Systematic Review and Meta-Analysis
por: Haghayegh, Shahab, et al.
Publicado: (2019) -
Automated Sleep Stages Classification Using Convolutional Neural Network From Raw and Time-Frequency Electroencephalogram Signals: Systematic Evaluation Study
por: Haghayegh, Shahab, et al.
Publicado: (2023) -
Correlation between heart rate variability and polysomnography-derived scores of obstructive sleep apnea
por: dos Santos, Rafael Rodrigues, et al.
Publicado: (2022) -
Sleep staging in the ICU with heart rate variability and breathing signals. An exploratory cross-sectional study using deep neural networks
por: Ganglberger, Wolfgang, et al.
Publicado: (2023) -
Expert-level sleep scoring with deep neural networks
por: Biswal, Siddharth, et al.
Publicado: (2018)