Cargando…
Crosstalk and ultrasensitivity in protein degradation pathways
Protein turnover is vital to cellular homeostasis. Many proteins are degraded efficiently only after they have been post-translationally “tagged” with a polyubiquitin chain. Ubiquitylation is a form of Post-Translational Modification (PTM): addition of a ubiquitin to the chain is catalyzed by E3 lig...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793289/ https://www.ncbi.nlm.nih.gov/pubmed/33370258 http://dx.doi.org/10.1371/journal.pcbi.1008492 |
_version_ | 1783633955950428160 |
---|---|
author | Mallela, Abhishek Nariya, Maulik K. Deeds, Eric J. |
author_facet | Mallela, Abhishek Nariya, Maulik K. Deeds, Eric J. |
author_sort | Mallela, Abhishek |
collection | PubMed |
description | Protein turnover is vital to cellular homeostasis. Many proteins are degraded efficiently only after they have been post-translationally “tagged” with a polyubiquitin chain. Ubiquitylation is a form of Post-Translational Modification (PTM): addition of a ubiquitin to the chain is catalyzed by E3 ligases, and removal of ubiquitin is catalyzed by a De-UBiquitylating enzyme (DUB). Nearly four decades ago, Goldbeter and Koshland discovered that reversible PTM cycles function like on-off switches when the substrates are at saturating concentrations. Although this finding has had profound implications for the understanding of switch-like behavior in biochemical networks, the general behavior of PTM cycles subject to synthesis and degradation has not been studied. Using a mathematical modeling approach, we found that simply introducing protein turnover to a standard modification cycle has profound effects, including significantly reducing the switch-like nature of the response. Our findings suggest that many classic results on PTM cycles may not hold in vivo where protein turnover is ubiquitous. We also found that proteins sharing an E3 ligase can have closely related changes in their expression levels. These results imply that it may be difficult to interpret experimental results obtained from either overexpressing or knocking down protein levels, since changes in protein expression can be coupled via E3 ligase crosstalk. Understanding crosstalk and competition for E3 ligases will be key in ultimately developing a global picture of protein homeostasis. |
format | Online Article Text |
id | pubmed-7793289 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-77932892021-01-27 Crosstalk and ultrasensitivity in protein degradation pathways Mallela, Abhishek Nariya, Maulik K. Deeds, Eric J. PLoS Comput Biol Research Article Protein turnover is vital to cellular homeostasis. Many proteins are degraded efficiently only after they have been post-translationally “tagged” with a polyubiquitin chain. Ubiquitylation is a form of Post-Translational Modification (PTM): addition of a ubiquitin to the chain is catalyzed by E3 ligases, and removal of ubiquitin is catalyzed by a De-UBiquitylating enzyme (DUB). Nearly four decades ago, Goldbeter and Koshland discovered that reversible PTM cycles function like on-off switches when the substrates are at saturating concentrations. Although this finding has had profound implications for the understanding of switch-like behavior in biochemical networks, the general behavior of PTM cycles subject to synthesis and degradation has not been studied. Using a mathematical modeling approach, we found that simply introducing protein turnover to a standard modification cycle has profound effects, including significantly reducing the switch-like nature of the response. Our findings suggest that many classic results on PTM cycles may not hold in vivo where protein turnover is ubiquitous. We also found that proteins sharing an E3 ligase can have closely related changes in their expression levels. These results imply that it may be difficult to interpret experimental results obtained from either overexpressing or knocking down protein levels, since changes in protein expression can be coupled via E3 ligase crosstalk. Understanding crosstalk and competition for E3 ligases will be key in ultimately developing a global picture of protein homeostasis. Public Library of Science 2020-12-28 /pmc/articles/PMC7793289/ /pubmed/33370258 http://dx.doi.org/10.1371/journal.pcbi.1008492 Text en © 2020 Mallela et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Mallela, Abhishek Nariya, Maulik K. Deeds, Eric J. Crosstalk and ultrasensitivity in protein degradation pathways |
title | Crosstalk and ultrasensitivity in protein degradation pathways |
title_full | Crosstalk and ultrasensitivity in protein degradation pathways |
title_fullStr | Crosstalk and ultrasensitivity in protein degradation pathways |
title_full_unstemmed | Crosstalk and ultrasensitivity in protein degradation pathways |
title_short | Crosstalk and ultrasensitivity in protein degradation pathways |
title_sort | crosstalk and ultrasensitivity in protein degradation pathways |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793289/ https://www.ncbi.nlm.nih.gov/pubmed/33370258 http://dx.doi.org/10.1371/journal.pcbi.1008492 |
work_keys_str_mv | AT mallelaabhishek crosstalkandultrasensitivityinproteindegradationpathways AT nariyamaulikk crosstalkandultrasensitivityinproteindegradationpathways AT deedsericj crosstalkandultrasensitivityinproteindegradationpathways |