Cargando…
New Omics—Derived Perspectives on Retinal Dystrophies: Could Ion Channels-Encoding or Related Genes Act as Modifier of Pathological Phenotype?
Ion channels are membrane-spanning integral proteins expressed in multiple organs, including the eye. Here, ion channels play a role in several physiological processes, like signal transmission and visual processing. A wide range of mutations have been reported in the corresponding genes and their i...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793472/ https://www.ncbi.nlm.nih.gov/pubmed/33374679 http://dx.doi.org/10.3390/ijms22010070 |
_version_ | 1783633999048998912 |
---|---|
author | Donato, Luigi Scimone, Concetta Alibrandi, Simona Abdalla, Ebtesam Mohamed Nabil, Karim Mahmoud D’Angelo, Rosalia Sidoti, Antonina |
author_facet | Donato, Luigi Scimone, Concetta Alibrandi, Simona Abdalla, Ebtesam Mohamed Nabil, Karim Mahmoud D’Angelo, Rosalia Sidoti, Antonina |
author_sort | Donato, Luigi |
collection | PubMed |
description | Ion channels are membrane-spanning integral proteins expressed in multiple organs, including the eye. Here, ion channels play a role in several physiological processes, like signal transmission and visual processing. A wide range of mutations have been reported in the corresponding genes and their interacting subunit coding genes, which contribute significantly to a wide spectrum of ocular diseases collectively called channelopathies, a subgroup of inherited retinal dystrophies. Such mutations result in either a loss or gain-of channel functions affecting the structure, assembly, trafficking and localization of channel proteins. We investigated the probands of seven Italian and Egyptian families affected by not completely defined forms of inherited retinal dystrophies, by whole exome sequencing (WES) experiments, and found interesting variants in already known causative genes probably able to impair retinal functionalities. However, because such variants did not completely explain the phenotype manifested by each patient, we proceed to further investigate possible related genes carrying mutations that might complement previously found data, based on the common aspect linked to neurotransmission impairments. We found 10 mutated genes whose variants might alter important ligand binding sites differently distributed through all considered patients. Such genes encode for ion channels, or their regulatory proteins, and strictly interact with known causative genes, also sharing with them synaptic-related pathways. Taking into account several limitations that will be resolved by further experiments, we believe that our exploratory investigation will help scientists to provide a new promising paradigm for precise diagnosis of retinal dystrophies to facilitate the development of rational treatments. |
format | Online Article Text |
id | pubmed-7793472 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77934722021-01-09 New Omics—Derived Perspectives on Retinal Dystrophies: Could Ion Channels-Encoding or Related Genes Act as Modifier of Pathological Phenotype? Donato, Luigi Scimone, Concetta Alibrandi, Simona Abdalla, Ebtesam Mohamed Nabil, Karim Mahmoud D’Angelo, Rosalia Sidoti, Antonina Int J Mol Sci Article Ion channels are membrane-spanning integral proteins expressed in multiple organs, including the eye. Here, ion channels play a role in several physiological processes, like signal transmission and visual processing. A wide range of mutations have been reported in the corresponding genes and their interacting subunit coding genes, which contribute significantly to a wide spectrum of ocular diseases collectively called channelopathies, a subgroup of inherited retinal dystrophies. Such mutations result in either a loss or gain-of channel functions affecting the structure, assembly, trafficking and localization of channel proteins. We investigated the probands of seven Italian and Egyptian families affected by not completely defined forms of inherited retinal dystrophies, by whole exome sequencing (WES) experiments, and found interesting variants in already known causative genes probably able to impair retinal functionalities. However, because such variants did not completely explain the phenotype manifested by each patient, we proceed to further investigate possible related genes carrying mutations that might complement previously found data, based on the common aspect linked to neurotransmission impairments. We found 10 mutated genes whose variants might alter important ligand binding sites differently distributed through all considered patients. Such genes encode for ion channels, or their regulatory proteins, and strictly interact with known causative genes, also sharing with them synaptic-related pathways. Taking into account several limitations that will be resolved by further experiments, we believe that our exploratory investigation will help scientists to provide a new promising paradigm for precise diagnosis of retinal dystrophies to facilitate the development of rational treatments. MDPI 2020-12-23 /pmc/articles/PMC7793472/ /pubmed/33374679 http://dx.doi.org/10.3390/ijms22010070 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Donato, Luigi Scimone, Concetta Alibrandi, Simona Abdalla, Ebtesam Mohamed Nabil, Karim Mahmoud D’Angelo, Rosalia Sidoti, Antonina New Omics—Derived Perspectives on Retinal Dystrophies: Could Ion Channels-Encoding or Related Genes Act as Modifier of Pathological Phenotype? |
title | New Omics—Derived Perspectives on Retinal Dystrophies: Could Ion Channels-Encoding or Related Genes Act as Modifier of Pathological Phenotype? |
title_full | New Omics—Derived Perspectives on Retinal Dystrophies: Could Ion Channels-Encoding or Related Genes Act as Modifier of Pathological Phenotype? |
title_fullStr | New Omics—Derived Perspectives on Retinal Dystrophies: Could Ion Channels-Encoding or Related Genes Act as Modifier of Pathological Phenotype? |
title_full_unstemmed | New Omics—Derived Perspectives on Retinal Dystrophies: Could Ion Channels-Encoding or Related Genes Act as Modifier of Pathological Phenotype? |
title_short | New Omics—Derived Perspectives on Retinal Dystrophies: Could Ion Channels-Encoding or Related Genes Act as Modifier of Pathological Phenotype? |
title_sort | new omics—derived perspectives on retinal dystrophies: could ion channels-encoding or related genes act as modifier of pathological phenotype? |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793472/ https://www.ncbi.nlm.nih.gov/pubmed/33374679 http://dx.doi.org/10.3390/ijms22010070 |
work_keys_str_mv | AT donatoluigi newomicsderivedperspectivesonretinaldystrophiescouldionchannelsencodingorrelatedgenesactasmodifierofpathologicalphenotype AT scimoneconcetta newomicsderivedperspectivesonretinaldystrophiescouldionchannelsencodingorrelatedgenesactasmodifierofpathologicalphenotype AT alibrandisimona newomicsderivedperspectivesonretinaldystrophiescouldionchannelsencodingorrelatedgenesactasmodifierofpathologicalphenotype AT abdallaebtesammohamed newomicsderivedperspectivesonretinaldystrophiescouldionchannelsencodingorrelatedgenesactasmodifierofpathologicalphenotype AT nabilkarimmahmoud newomicsderivedperspectivesonretinaldystrophiescouldionchannelsencodingorrelatedgenesactasmodifierofpathologicalphenotype AT dangelorosalia newomicsderivedperspectivesonretinaldystrophiescouldionchannelsencodingorrelatedgenesactasmodifierofpathologicalphenotype AT sidotiantonina newomicsderivedperspectivesonretinaldystrophiescouldionchannelsencodingorrelatedgenesactasmodifierofpathologicalphenotype |