Cargando…
Encapsulating MoO(2) Nanocrystals into Flexible Carbon Nanofibers via Electrospinning for High-Performance Lithium Storage
Design and synthesis of flexible and self-supporting electrode materials in high-performance lithium storage is significant for applications in the field of smart wearable devices. Herein, flexible carbon nanofiber membranes with uniformly distributed molybdenum dioxide (MoO(2)) nanocrystals are fab...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793480/ https://www.ncbi.nlm.nih.gov/pubmed/33374695 http://dx.doi.org/10.3390/polym13010022 |
Sumario: | Design and synthesis of flexible and self-supporting electrode materials in high-performance lithium storage is significant for applications in the field of smart wearable devices. Herein, flexible carbon nanofiber membranes with uniformly distributed molybdenum dioxide (MoO(2)) nanocrystals are fabricated by a needlefree electrospinning method combined with the subsequent carbonization process, which exhibits outstanding structural stability under abrasion and deformation. The as-fabricated lithium-ion batteries (LIBs) exhibit a high discharge of 450 mAh g(−1) after 500 cycles at 2000 mA g(−1) by using the MoO(2)/C nanofiber membrane as the self-supporting anode. Further, the nanofibers structure remains intact after 500 cycles, which reflects the excellent stability of the materials. This study provides a simple and effective method for the preparation of MoO(2)/C nanofiber materials, which can not only maintain its excellent electrochemical and physical properties, but also easily realize large-scale production. It is undoubtedly beneficial for the development of flexible LIBs and smart wearable devices. |
---|