Cargando…
Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry
The combination of thermal stress and ocean acidification (OA) can more negatively affect coral calcification than an individual stressors, but the mechanism behind this interaction is unknown. We used two independent methods (microelectrode and boron geochemistry) to measure calcifying fluid pH (pH...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793579/ https://www.ncbi.nlm.nih.gov/pubmed/33523983 http://dx.doi.org/10.1126/sciadv.aba9958 |
_version_ | 1783634020322508800 |
---|---|
author | Guillermic, Maxence Cameron, Louise P. De Corte, Ilian Misra, Sambuddha Bijma, Jelle de Beer, Dirk Reymond, Claire E. Westphal, Hildegard Ries, Justin B. Eagle, Robert A. |
author_facet | Guillermic, Maxence Cameron, Louise P. De Corte, Ilian Misra, Sambuddha Bijma, Jelle de Beer, Dirk Reymond, Claire E. Westphal, Hildegard Ries, Justin B. Eagle, Robert A. |
author_sort | Guillermic, Maxence |
collection | PubMed |
description | The combination of thermal stress and ocean acidification (OA) can more negatively affect coral calcification than an individual stressors, but the mechanism behind this interaction is unknown. We used two independent methods (microelectrode and boron geochemistry) to measure calcifying fluid pH (pH(cf)) and carbonate chemistry of the corals Pocillopora damicornis and Stylophora pistillata grown under various temperature and pCO(2) conditions. Although these approaches demonstrate that they record pH(cf) over different time scales, they reveal that both species can cope with OA under optimal temperatures (28°C) by elevating pH(cf) and aragonite saturation state (Ω(cf)) in support of calcification. At 31°C, neither species elevated these parameters as they did at 28°C and, likewise, could not maintain substantially positive calcification rates under any pH treatment. These results reveal a previously uncharacterized influence of temperature on coral pH(cf) regulation—the apparent mechanism behind the negative interaction between thermal stress and OA on coral calcification. |
format | Online Article Text |
id | pubmed-7793579 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-77935792021-01-15 Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry Guillermic, Maxence Cameron, Louise P. De Corte, Ilian Misra, Sambuddha Bijma, Jelle de Beer, Dirk Reymond, Claire E. Westphal, Hildegard Ries, Justin B. Eagle, Robert A. Sci Adv Research Articles The combination of thermal stress and ocean acidification (OA) can more negatively affect coral calcification than an individual stressors, but the mechanism behind this interaction is unknown. We used two independent methods (microelectrode and boron geochemistry) to measure calcifying fluid pH (pH(cf)) and carbonate chemistry of the corals Pocillopora damicornis and Stylophora pistillata grown under various temperature and pCO(2) conditions. Although these approaches demonstrate that they record pH(cf) over different time scales, they reveal that both species can cope with OA under optimal temperatures (28°C) by elevating pH(cf) and aragonite saturation state (Ω(cf)) in support of calcification. At 31°C, neither species elevated these parameters as they did at 28°C and, likewise, could not maintain substantially positive calcification rates under any pH treatment. These results reveal a previously uncharacterized influence of temperature on coral pH(cf) regulation—the apparent mechanism behind the negative interaction between thermal stress and OA on coral calcification. American Association for the Advancement of Science 2021-01-08 /pmc/articles/PMC7793579/ /pubmed/33523983 http://dx.doi.org/10.1126/sciadv.aba9958 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Guillermic, Maxence Cameron, Louise P. De Corte, Ilian Misra, Sambuddha Bijma, Jelle de Beer, Dirk Reymond, Claire E. Westphal, Hildegard Ries, Justin B. Eagle, Robert A. Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry |
title | Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry |
title_full | Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry |
title_fullStr | Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry |
title_full_unstemmed | Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry |
title_short | Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry |
title_sort | thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793579/ https://www.ncbi.nlm.nih.gov/pubmed/33523983 http://dx.doi.org/10.1126/sciadv.aba9958 |
work_keys_str_mv | AT guillermicmaxence thermalstressreducespocilloporidcoralresiliencetooceanacidificationbyimpairingcontrolovercalcifyingfluidchemistry AT cameronlouisep thermalstressreducespocilloporidcoralresiliencetooceanacidificationbyimpairingcontrolovercalcifyingfluidchemistry AT decorteilian thermalstressreducespocilloporidcoralresiliencetooceanacidificationbyimpairingcontrolovercalcifyingfluidchemistry AT misrasambuddha thermalstressreducespocilloporidcoralresiliencetooceanacidificationbyimpairingcontrolovercalcifyingfluidchemistry AT bijmajelle thermalstressreducespocilloporidcoralresiliencetooceanacidificationbyimpairingcontrolovercalcifyingfluidchemistry AT debeerdirk thermalstressreducespocilloporidcoralresiliencetooceanacidificationbyimpairingcontrolovercalcifyingfluidchemistry AT reymondclairee thermalstressreducespocilloporidcoralresiliencetooceanacidificationbyimpairingcontrolovercalcifyingfluidchemistry AT westphalhildegard thermalstressreducespocilloporidcoralresiliencetooceanacidificationbyimpairingcontrolovercalcifyingfluidchemistry AT riesjustinb thermalstressreducespocilloporidcoralresiliencetooceanacidificationbyimpairingcontrolovercalcifyingfluidchemistry AT eagleroberta thermalstressreducespocilloporidcoralresiliencetooceanacidificationbyimpairingcontrolovercalcifyingfluidchemistry |