Cargando…
Bitstream-Based Neural Network for Scalable, Efficient, and Accurate Deep Learning Hardware
While convolutional neural networks (CNNs) continue to renew state-of-the-art performance across many fields of machine learning, their hardware implementations tend to be very costly and inflexible. Neuromorphic hardware, on the other hand, targets higher efficiency but their inference accuracy lag...
Autores principales: | Sim, Hyeonuk, Lee, Jongeun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793640/ https://www.ncbi.nlm.nih.gov/pubmed/33424530 http://dx.doi.org/10.3389/fnins.2020.543472 |
Ejemplares similares
-
Toward Scalable, Efficient, and Accurate Deep Spiking Neural Networks With Backward Residual Connections, Stochastic Softmax, and Hybridization
por: Panda, Priyadarshini, et al.
Publicado: (2020) -
The CHORUS honeycomb tracker and its bitstream electronics
por: Uiterwijk, J W E, et al.
Publicado: (1998) -
Efficient Synapse Memory Structure for Reconfigurable Digital Neuromorphic Hardware
por: Kim, Jinseok, et al.
Publicado: (2018) -
Video Stream Recognition Using Bitstream Shape for Mobile Network QoE
por: Chmieliauskas, Darius, et al.
Publicado: (2023) -
Freely scalable and reconfigurable optical hardware for deep learning
por: Bernstein, Liane, et al.
Publicado: (2021)