Cargando…
Exploratory Analysis of Qualitative MR Imaging Features for the Differentiation of Glioblastoma and Brain Metastases
OBJECTIVES: To identify qualitative VASARI (Visually AcceSIble Rembrandt Images) Magnetic Resonance (MR) Imaging features for differentiation of glioblastoma (GBM) and brain metastasis (BM) of different primary tumors. MATERIALS AND METHODS: T1-weighted pre- and post-contrast, T2-weighted, and T2-we...
Autores principales: | Meier, Raphael, Pahud de Mortanges, Aurélie, Wiest, Roland, Knecht, Urspeter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793795/ https://www.ncbi.nlm.nih.gov/pubmed/33425734 http://dx.doi.org/10.3389/fonc.2020.581037 |
Ejemplares similares
-
Evaluating automated longitudinal tumor measurements for glioblastoma response assessment
por: Suter, Yannick, et al.
Publicado: (2023) -
Divide and Conquer: Stratifying Training Data by Tumor Grade Improves Deep Learning-Based Brain Tumor Segmentation
por: Rebsamen, Michael, et al.
Publicado: (2019) -
Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry
por: Meier, Raphael, et al.
Publicado: (2016) -
Radiomics for glioblastoma survival analysis in pre-operative MRI: exploring feature robustness, class boundaries, and machine learning techniques
por: Suter, Yannick, et al.
Publicado: (2020) -
The LUMIERE dataset: Longitudinal Glioblastoma MRI with expert RANO evaluation
por: Suter, Yannick, et al.
Publicado: (2022)