Cargando…
Machine Learning in Computational Surface Science and Catalysis: Case Studies on Water and Metal–Oxide Interfaces
The goal of many computational physicists and chemists is the ability to bridge the gap between atomistic length scales of about a few multiples of an Ångström (Å), i. e., 10(−10) m, and meso- or macroscopic length scales by virtue of simulations. The same applies to timescales. Machine learning tec...
Autores principales: | Li, Xiaoke, Paier, Wolfgang, Paier, Joachim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793815/ https://www.ncbi.nlm.nih.gov/pubmed/33425857 http://dx.doi.org/10.3389/fchem.2020.601029 |
Ejemplares similares
-
Editorial: Interfacial Structures and Their Properties
por: Paier, Joachim, et al.
Publicado: (2021) -
Surface science of catalysis
por: Dwyer, Daniel J, et al.
Publicado: (1992) -
Supported metal and metal oxide particles with proximity effect for catalysis
por: Biswas, Subhadeep, et al.
Publicado: (2020) -
Catalysis of water oxidation in acetonitrile by iridium oxide nanoparticles
por: Hidalgo-Acosta, Jonnathan C., et al.
Publicado: (2015) -
An exceptionally stable octacobalt-cluster-based metal–organic framework for enhanced water oxidation catalysis
por: Huang, Ning-Yu, et al.
Publicado: (2019)