Cargando…

Machine Learning in Computational Surface Science and Catalysis: Case Studies on Water and Metal–Oxide Interfaces

The goal of many computational physicists and chemists is the ability to bridge the gap between atomistic length scales of about a few multiples of an Ångström (Å), i. e., 10(−10) m, and meso- or macroscopic length scales by virtue of simulations. The same applies to timescales. Machine learning tec...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xiaoke, Paier, Wolfgang, Paier, Joachim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793815/
https://www.ncbi.nlm.nih.gov/pubmed/33425857
http://dx.doi.org/10.3389/fchem.2020.601029

Ejemplares similares