Cargando…
An Integrative Computational Approach Based on Expression Similarity Signatures to Identify Protein–Protein Interaction Networks in Female-Specific Cancers
Breast, ovarian, and endometrial cancers have a major impact on mortality in women. These tumors share hormone-dependent mechanisms involved in female-specific cancers which support tumor growth in a different manner. Integrated computational approaches may allow us to better detect genomic similari...
Autores principales: | Pane, Katia, Affinito, Ornella, Zanfardino, Mario, Castaldo, Rossana, Incoronato, Mariarosaria, Salvatore, Marco, Franzese, Monica |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793872/ https://www.ncbi.nlm.nih.gov/pubmed/33424936 http://dx.doi.org/10.3389/fgene.2020.612521 |
Ejemplares similares
-
MuSA: a graphical user interface for multi-OMICs data integration in radiogenomic studies
por: Zanfardino, Mario, et al.
Publicado: (2021) -
Discovering Common miRNA Signatures Underlying Female-Specific Cancers via a Machine Learning Approach Driven by the Cancer Hallmark ERBB
por: Pane, Katia, et al.
Publicado: (2022) -
A Complex Radiomic Signature in Luminal Breast Cancer from a Weighted Statistical Framework: A Pilot Study
por: Castaldo, Rossana, et al.
Publicado: (2022) -
TCGA-TCIA Impact on Radiogenomics Cancer Research: A Systematic Review
por: Zanfardino, Mario, et al.
Publicado: (2019) -
The Impact of Normalization Approaches to Automatically Detect Radiogenomic Phenotypes Characterizing Breast Cancer Receptors Status
por: Castaldo, Rossana, et al.
Publicado: (2020)