Cargando…
Elucidating the network features and evolutionary attributes of intra- and interspecific protein–protein interactions between human and pathogenic bacteria
Host–pathogen interaction is one of the most powerful determinants involved in coevolutionary processes covering a broad range of biological phenomena at molecular, cellular, organismal and/or population level. The present study explored host–pathogen interaction from the perspective of human–bacter...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794237/ https://www.ncbi.nlm.nih.gov/pubmed/33420198 http://dx.doi.org/10.1038/s41598-020-80549-x |
Sumario: | Host–pathogen interaction is one of the most powerful determinants involved in coevolutionary processes covering a broad range of biological phenomena at molecular, cellular, organismal and/or population level. The present study explored host–pathogen interaction from the perspective of human–bacteria protein–protein interaction based on large-scale interspecific and intraspecific interactome data for human and three pathogenic bacterial species, Bacillus anthracis, Francisella tularensis and Yersinia pestis. The network features revealed a preferential enrichment of intraspecific hubs and bottlenecks for both human and bacterial pathogens in the interspecific human–bacteria interaction. Analyses unveiled that these bacterial pathogens interact mostly with human party-hubs that may enable them to affect desired functional modules, leading to pathogenesis. Structural features of pathogen-interacting human proteins indicated an abundance of protein domains, providing opportunities for interspecific domain-domain interactions. Moreover, these interactions do not always occur with high-affinity, as we observed that bacteria-interacting human proteins are rich in protein-disorder content, which correlates positively with the number of interacting pathogen proteins, facilitating low-affinity interspecific interactions. Furthermore, functional analyses of pathogen-interacting human proteins revealed an enrichment in regulation of processes like metabolism, immune system, cellular localization and transport apart from divulging functional competence to bind enzyme/protein, nucleic acids and cell adhesion molecules, necessary for host-microbial cross-talk. |
---|