Cargando…
RGC and Vision Loss From Traumatic Optic Neuropathy Induced by Repetitive Closed Head Trauma Is Dependent on Timing and Force of Impact
PURPOSE: Traumatic optic neuropathy (TON) is often caused by blunt head trauma and has no currently effective treatment. Common animal models of TON induced by surgical crush injury are plagued by variability and do not mimic typical mechanisms of TON injury. Traumatic head impact models have recent...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794277/ https://www.ncbi.nlm.nih.gov/pubmed/33505775 http://dx.doi.org/10.1167/tvst.10.1.8 |
_version_ | 1783634170459717632 |
---|---|
author | Khan, Reas S. Ross, Ahmara G. Aravand, Puya Dine, Kimberly Selzer, Evan B. Shindler, Kenneth S. |
author_facet | Khan, Reas S. Ross, Ahmara G. Aravand, Puya Dine, Kimberly Selzer, Evan B. Shindler, Kenneth S. |
author_sort | Khan, Reas S. |
collection | PubMed |
description | PURPOSE: Traumatic optic neuropathy (TON) is often caused by blunt head trauma and has no currently effective treatment. Common animal models of TON induced by surgical crush injury are plagued by variability and do not mimic typical mechanisms of TON injury. Traumatic head impact models have recently shown evidence of TON, but the degree of head impact necessary to consistently induce TON is not well characterized, and it is examined here. METHODS: Traumatic skull impacts to C57BL/6J mice were induced using an electromagnetic controlled impact device. One impact performed at two depths (mild and severe), as well as three and five repetitive impacts with an interconcussion interval of 48 hours, were tested. Optokinetic responses (OKRs) and retinal ganglion cell (RGC) loss were measured. RESULTS: Five repetitive mild impacts significantly decreased OKR scores and RGC numbers compared with control mice 10 weeks after initial impact, with maximal pathology observed by 6 weeks and partial but significant loss present by 3 weeks. One severe impact induced similar TON. Three mild impacts also induced early OKR and RGC loss, but one mild impact did not. Equivalent degrees of TON were induced bilaterally, and a significant correlation was observed between OKR scores and RGC numbers. CONCLUSIONS: Repetitive, mild closed head trauma in mice induces progressive RGC and vision loss that worsens with increasing impacts. TRANSLATIONAL RELEVANCE: Results detail a reproducible model of TON that provides a reliable platform for studying potential treatments over a 3- to 6-week time course. |
format | Online Article Text |
id | pubmed-7794277 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Association for Research in Vision and Ophthalmology |
record_format | MEDLINE/PubMed |
spelling | pubmed-77942772021-01-26 RGC and Vision Loss From Traumatic Optic Neuropathy Induced by Repetitive Closed Head Trauma Is Dependent on Timing and Force of Impact Khan, Reas S. Ross, Ahmara G. Aravand, Puya Dine, Kimberly Selzer, Evan B. Shindler, Kenneth S. Transl Vis Sci Technol Article PURPOSE: Traumatic optic neuropathy (TON) is often caused by blunt head trauma and has no currently effective treatment. Common animal models of TON induced by surgical crush injury are plagued by variability and do not mimic typical mechanisms of TON injury. Traumatic head impact models have recently shown evidence of TON, but the degree of head impact necessary to consistently induce TON is not well characterized, and it is examined here. METHODS: Traumatic skull impacts to C57BL/6J mice were induced using an electromagnetic controlled impact device. One impact performed at two depths (mild and severe), as well as three and five repetitive impacts with an interconcussion interval of 48 hours, were tested. Optokinetic responses (OKRs) and retinal ganglion cell (RGC) loss were measured. RESULTS: Five repetitive mild impacts significantly decreased OKR scores and RGC numbers compared with control mice 10 weeks after initial impact, with maximal pathology observed by 6 weeks and partial but significant loss present by 3 weeks. One severe impact induced similar TON. Three mild impacts also induced early OKR and RGC loss, but one mild impact did not. Equivalent degrees of TON were induced bilaterally, and a significant correlation was observed between OKR scores and RGC numbers. CONCLUSIONS: Repetitive, mild closed head trauma in mice induces progressive RGC and vision loss that worsens with increasing impacts. TRANSLATIONAL RELEVANCE: Results detail a reproducible model of TON that provides a reliable platform for studying potential treatments over a 3- to 6-week time course. The Association for Research in Vision and Ophthalmology 2021-01-06 /pmc/articles/PMC7794277/ /pubmed/33505775 http://dx.doi.org/10.1167/tvst.10.1.8 Text en Copyright 2021 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
spellingShingle | Article Khan, Reas S. Ross, Ahmara G. Aravand, Puya Dine, Kimberly Selzer, Evan B. Shindler, Kenneth S. RGC and Vision Loss From Traumatic Optic Neuropathy Induced by Repetitive Closed Head Trauma Is Dependent on Timing and Force of Impact |
title | RGC and Vision Loss From Traumatic Optic Neuropathy Induced by Repetitive Closed Head Trauma Is Dependent on Timing and Force of Impact |
title_full | RGC and Vision Loss From Traumatic Optic Neuropathy Induced by Repetitive Closed Head Trauma Is Dependent on Timing and Force of Impact |
title_fullStr | RGC and Vision Loss From Traumatic Optic Neuropathy Induced by Repetitive Closed Head Trauma Is Dependent on Timing and Force of Impact |
title_full_unstemmed | RGC and Vision Loss From Traumatic Optic Neuropathy Induced by Repetitive Closed Head Trauma Is Dependent on Timing and Force of Impact |
title_short | RGC and Vision Loss From Traumatic Optic Neuropathy Induced by Repetitive Closed Head Trauma Is Dependent on Timing and Force of Impact |
title_sort | rgc and vision loss from traumatic optic neuropathy induced by repetitive closed head trauma is dependent on timing and force of impact |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794277/ https://www.ncbi.nlm.nih.gov/pubmed/33505775 http://dx.doi.org/10.1167/tvst.10.1.8 |
work_keys_str_mv | AT khanreass rgcandvisionlossfromtraumaticopticneuropathyinducedbyrepetitiveclosedheadtraumaisdependentontimingandforceofimpact AT rossahmarag rgcandvisionlossfromtraumaticopticneuropathyinducedbyrepetitiveclosedheadtraumaisdependentontimingandforceofimpact AT aravandpuya rgcandvisionlossfromtraumaticopticneuropathyinducedbyrepetitiveclosedheadtraumaisdependentontimingandforceofimpact AT dinekimberly rgcandvisionlossfromtraumaticopticneuropathyinducedbyrepetitiveclosedheadtraumaisdependentontimingandforceofimpact AT selzerevanb rgcandvisionlossfromtraumaticopticneuropathyinducedbyrepetitiveclosedheadtraumaisdependentontimingandforceofimpact AT shindlerkenneths rgcandvisionlossfromtraumaticopticneuropathyinducedbyrepetitiveclosedheadtraumaisdependentontimingandforceofimpact |