Cargando…

Organ-specific, multimodal, wireless optoelectronics for high-throughput phenotyping of peripheral neural pathways

The vagus nerve supports diverse autonomic functions and behaviors important for health and survival. To understand how specific components of the vagus contribute to behaviors and long-term physiological effects, it is critical to modulate their activity with anatomical specificity in awake, freely...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Woo Seok, Hong, Sungcheol, Gamero, Milenka, Jeevakumar, Vivekanand, Smithhart, Clay M., Price, Theodore J., Palmiter, Richard D., Campos, Carlos, Park, Sung Il
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794361/
https://www.ncbi.nlm.nih.gov/pubmed/33420038
http://dx.doi.org/10.1038/s41467-020-20421-8
Descripción
Sumario:The vagus nerve supports diverse autonomic functions and behaviors important for health and survival. To understand how specific components of the vagus contribute to behaviors and long-term physiological effects, it is critical to modulate their activity with anatomical specificity in awake, freely behaving conditions using reliable methods. Here, we introduce an organ-specific scalable, multimodal, wireless optoelectronic device for precise and chronic optogenetic manipulations in vivo. When combined with an advanced, coil-antenna system and a multiplexing strategy for powering 8 individual homecages using a single RF transmitter, the proposed wireless telemetry enables low cost, high-throughput, and precise functional mapping of peripheral neural circuits, including long-term behavioral and physiological measurements. Deployment of these technologies reveals an unexpected role for stomach, non-stretch vagal sensory fibers in suppressing appetite and demonstrates the durability of the miniature wireless device inside harsh gastric conditions.