Cargando…
Development and validation of an interpretable neural network for prediction of postoperative in-hospital mortality
While deep neural networks (DNNs) and other machine learning models often have higher accuracy than simpler models like logistic regression (LR), they are often considered to be “black box” models and this lack of interpretability and transparency is considered a challenge for clinical adoption. In...
Autores principales: | Lee, Christine K., Samad, Muntaha, Hofer, Ira, Cannesson, Maxime, Baldi, Pierre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794438/ https://www.ncbi.nlm.nih.gov/pubmed/33420341 http://dx.doi.org/10.1038/s41746-020-00377-1 |
Ejemplares similares
-
Development and validation of a deep neural network model to predict postoperative mortality, acute kidney injury, and reintubation using a single feature set
por: Hofer, Ira S., et al.
Publicado: (2020) -
Machine learning of physiological waveforms and electronic health record data to predict, diagnose and treat haemodynamic instability in surgical patients: protocol for a retrospective study
por: Cannesson, Maxime, et al.
Publicado: (2019) -
Interpretable generalized neural additive models for mortality prediction of COVID-19 hospitalized patients in Hamadan, Iran
por: Moslehi, Samad, et al.
Publicado: (2022) -
CircadiOmics: circadian omic web portal
por: Samad, Muntaha, et al.
Publicado: (2022) -
Predicting Postoperative Mortality With Deep Neural Networks and Natural Language Processing: Model Development and Validation
por: Chen, Pei-Fu, et al.
Publicado: (2022)