Cargando…

Hydride-based antiperovskites with soft anionic sublattices as fast alkali ionic conductors

Most solid-state materials are composed of p-block anions, only in recent years the introduction of hydride anions (1s(2)) in oxides (e.g., SrVO(2)H, BaTi(O,H)(3)) has allowed the discovery of various interesting properties. Here we exploit the large polarizability of hydride anions (H(–)) together...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Shenghan, Broux, Thibault, Fujii, Susumu, Tassel, Cédric, Yamamoto, Kentaro, Xiao, Yao, Oikawa, Itaru, Takamura, Hitoshi, Ubukata, Hiroki, Watanabe, Yuki, Fujii, Kotaro, Yashima, Masatomo, Kuwabara, Akihide, Uchimoto, Yoshiharu, Kageyama, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794446/
https://www.ncbi.nlm.nih.gov/pubmed/33420012
http://dx.doi.org/10.1038/s41467-020-20370-2
_version_ 1783634210579283968
author Gao, Shenghan
Broux, Thibault
Fujii, Susumu
Tassel, Cédric
Yamamoto, Kentaro
Xiao, Yao
Oikawa, Itaru
Takamura, Hitoshi
Ubukata, Hiroki
Watanabe, Yuki
Fujii, Kotaro
Yashima, Masatomo
Kuwabara, Akihide
Uchimoto, Yoshiharu
Kageyama, Hiroshi
author_facet Gao, Shenghan
Broux, Thibault
Fujii, Susumu
Tassel, Cédric
Yamamoto, Kentaro
Xiao, Yao
Oikawa, Itaru
Takamura, Hitoshi
Ubukata, Hiroki
Watanabe, Yuki
Fujii, Kotaro
Yashima, Masatomo
Kuwabara, Akihide
Uchimoto, Yoshiharu
Kageyama, Hiroshi
author_sort Gao, Shenghan
collection PubMed
description Most solid-state materials are composed of p-block anions, only in recent years the introduction of hydride anions (1s(2)) in oxides (e.g., SrVO(2)H, BaTi(O,H)(3)) has allowed the discovery of various interesting properties. Here we exploit the large polarizability of hydride anions (H(–)) together with chalcogenide (Ch(2–)) anions to construct a family of antiperovskites with soft anionic sublattices. The M(3)HCh antiperovskites (M = Li, Na) adopt the ideal cubic structure except orthorhombic Na(3)HS, despite the large variation in sizes of M and Ch. This unconventional robustness of cubic phase mainly originates from the large size-flexibility of the H(–) anion. Theoretical and experimental studies reveal low migration barriers for Li(+)/Na(+) transport and high ionic conductivity, possibly promoted by a soft phonon mode associated with the rotational motion of HM(6) octahedra in their cubic forms. Aliovalent substitution to create vacancies has further enhanced ionic conductivities of this series of antiperovskites, resulting in Na(2.9)H(Se(0.9)I(0.1)) achieving a high conductivity of ~1 × 10(–4) S/cm (100 °C).
format Online
Article
Text
id pubmed-7794446
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-77944462021-01-21 Hydride-based antiperovskites with soft anionic sublattices as fast alkali ionic conductors Gao, Shenghan Broux, Thibault Fujii, Susumu Tassel, Cédric Yamamoto, Kentaro Xiao, Yao Oikawa, Itaru Takamura, Hitoshi Ubukata, Hiroki Watanabe, Yuki Fujii, Kotaro Yashima, Masatomo Kuwabara, Akihide Uchimoto, Yoshiharu Kageyama, Hiroshi Nat Commun Article Most solid-state materials are composed of p-block anions, only in recent years the introduction of hydride anions (1s(2)) in oxides (e.g., SrVO(2)H, BaTi(O,H)(3)) has allowed the discovery of various interesting properties. Here we exploit the large polarizability of hydride anions (H(–)) together with chalcogenide (Ch(2–)) anions to construct a family of antiperovskites with soft anionic sublattices. The M(3)HCh antiperovskites (M = Li, Na) adopt the ideal cubic structure except orthorhombic Na(3)HS, despite the large variation in sizes of M and Ch. This unconventional robustness of cubic phase mainly originates from the large size-flexibility of the H(–) anion. Theoretical and experimental studies reveal low migration barriers for Li(+)/Na(+) transport and high ionic conductivity, possibly promoted by a soft phonon mode associated with the rotational motion of HM(6) octahedra in their cubic forms. Aliovalent substitution to create vacancies has further enhanced ionic conductivities of this series of antiperovskites, resulting in Na(2.9)H(Se(0.9)I(0.1)) achieving a high conductivity of ~1 × 10(–4) S/cm (100 °C). Nature Publishing Group UK 2021-01-08 /pmc/articles/PMC7794446/ /pubmed/33420012 http://dx.doi.org/10.1038/s41467-020-20370-2 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Gao, Shenghan
Broux, Thibault
Fujii, Susumu
Tassel, Cédric
Yamamoto, Kentaro
Xiao, Yao
Oikawa, Itaru
Takamura, Hitoshi
Ubukata, Hiroki
Watanabe, Yuki
Fujii, Kotaro
Yashima, Masatomo
Kuwabara, Akihide
Uchimoto, Yoshiharu
Kageyama, Hiroshi
Hydride-based antiperovskites with soft anionic sublattices as fast alkali ionic conductors
title Hydride-based antiperovskites with soft anionic sublattices as fast alkali ionic conductors
title_full Hydride-based antiperovskites with soft anionic sublattices as fast alkali ionic conductors
title_fullStr Hydride-based antiperovskites with soft anionic sublattices as fast alkali ionic conductors
title_full_unstemmed Hydride-based antiperovskites with soft anionic sublattices as fast alkali ionic conductors
title_short Hydride-based antiperovskites with soft anionic sublattices as fast alkali ionic conductors
title_sort hydride-based antiperovskites with soft anionic sublattices as fast alkali ionic conductors
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794446/
https://www.ncbi.nlm.nih.gov/pubmed/33420012
http://dx.doi.org/10.1038/s41467-020-20370-2
work_keys_str_mv AT gaoshenghan hydridebasedantiperovskiteswithsoftanionicsublatticesasfastalkaliionicconductors
AT brouxthibault hydridebasedantiperovskiteswithsoftanionicsublatticesasfastalkaliionicconductors
AT fujiisusumu hydridebasedantiperovskiteswithsoftanionicsublatticesasfastalkaliionicconductors
AT tasselcedric hydridebasedantiperovskiteswithsoftanionicsublatticesasfastalkaliionicconductors
AT yamamotokentaro hydridebasedantiperovskiteswithsoftanionicsublatticesasfastalkaliionicconductors
AT xiaoyao hydridebasedantiperovskiteswithsoftanionicsublatticesasfastalkaliionicconductors
AT oikawaitaru hydridebasedantiperovskiteswithsoftanionicsublatticesasfastalkaliionicconductors
AT takamurahitoshi hydridebasedantiperovskiteswithsoftanionicsublatticesasfastalkaliionicconductors
AT ubukatahiroki hydridebasedantiperovskiteswithsoftanionicsublatticesasfastalkaliionicconductors
AT watanabeyuki hydridebasedantiperovskiteswithsoftanionicsublatticesasfastalkaliionicconductors
AT fujiikotaro hydridebasedantiperovskiteswithsoftanionicsublatticesasfastalkaliionicconductors
AT yashimamasatomo hydridebasedantiperovskiteswithsoftanionicsublatticesasfastalkaliionicconductors
AT kuwabaraakihide hydridebasedantiperovskiteswithsoftanionicsublatticesasfastalkaliionicconductors
AT uchimotoyoshiharu hydridebasedantiperovskiteswithsoftanionicsublatticesasfastalkaliionicconductors
AT kageyamahiroshi hydridebasedantiperovskiteswithsoftanionicsublatticesasfastalkaliionicconductors