Cargando…
Automated segmentation of endometrial cancer on MR images using deep learning
Preoperative MR imaging in endometrial cancer patients provides valuable information on local tumor extent, which routinely guides choice of surgical procedure and adjuvant therapy. Furthermore, whole-volume tumor analyses of MR images may provide radiomic tumor signatures potentially relevant for b...
Autores principales: | Hodneland, Erlend, Dybvik, Julie A., Wagner-Larsen, Kari S., Šoltészová, Veronika, Munthe-Kaas, Antonella Z., Fasmer, Kristine E., Krakstad, Camilla, Lundervold, Arvid, Lundervold, Alexander S., Salvesen, Øyvind, Erickson, Bradley J., Haldorsen, Ingfrid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794479/ https://www.ncbi.nlm.nih.gov/pubmed/33420205 http://dx.doi.org/10.1038/s41598-020-80068-9 |
Ejemplares similares
-
Whole‐Volume Tumor MRI Radiomics for Prognostic Modeling in Endometrial Cancer
por: Fasmer, Kristine E., et al.
Publicado: (2020) -
A radiogenomics application for prognostic profiling of endometrial cancer
por: Hoivik, Erling A., et al.
Publicado: (2021) -
Preoperative 18F-FDG PET/CT tumor markers outperform MRI-based markers for the prediction of lymph node metastases in primary endometrial cancer
por: Fasmer, Kristine E., et al.
Publicado: (2020) -
MRI‐based radiomic signatures for pretreatment prognostication in cervical cancer
por: Wagner‐Larsen, Kari S., et al.
Publicado: (2023) -
A new framework for assessing subject-specific whole brain circulation and perfusion using MRI-based measurements and a multi-scale continuous flow model
por: Hodneland, Erlend, et al.
Publicado: (2019)