Cargando…

Two-dimensional arrays of vertically packed spin-valves with picoTesla sensitivity at room temperature

A new device architecture using giant magnetoresistive sensors demonstrates the capability to detect very low magnetic fields on the pT range. A combination of vertically packed spin-valve sensors with two-dimensional in-plane arrays, connected in series and in parallel, delivers a final detection l...

Descripción completa

Detalles Bibliográficos
Autores principales: Silva, Marilia, Franco, Fernando, Leitao, Diana C., Cardoso, Susana, Freitas, Paulo P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794481/
https://www.ncbi.nlm.nih.gov/pubmed/33420189
http://dx.doi.org/10.1038/s41598-020-79856-0
Descripción
Sumario:A new device architecture using giant magnetoresistive sensors demonstrates the capability to detect very low magnetic fields on the pT range. A combination of vertically packed spin-valve sensors with two-dimensional in-plane arrays, connected in series and in parallel, delivers a final detection level of 360 pT/[Formula: see text] at 10 Hz at room temperature. The device design is supported by an analytical model developed for a vertically packed spin-valve system, which takes into account all magnetic couplings present. Optimization concerning the spacer thickness and sensor physical dimensions depending on the number of pilled up spin-valves is necessary. To push the limits of detection, arrays of a large number of sensing elements (up to 440,000) are patterned with a geometry that improves sensitivity and in a configuration that reduces the resistance, leading to a lower noise level. The final device performance with pT detectivity is demonstrated in an un-shielded environment suitable for detection of bio-signals.