Cargando…
Automated spectroscopic modelling with optimised convolutional neural networks
Convolutional neural networks (CNN) for spectroscopic modelling are currently tuned manually, and the effects of their hyperparameters are not analysed. These can result in sub-optimal models. Here, we propose an approach to tune one-dimensional CNN (1D-CNNs) automatically. It consists of a parametr...
Autores principales: | Shen, Zefang, Viscarra Rossel, R. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794546/ https://www.ncbi.nlm.nih.gov/pubmed/33420224 http://dx.doi.org/10.1038/s41598-020-80486-9 |
Ejemplares similares
-
Wavelet geographically weighted regression for spectroscopic modelling of soil properties
por: Song, Yongze, et al.
Publicado: (2021) -
Convolutional Neural Networks for Spectroscopic Analysis in Retinal Oximetry
por: DePaoli, Damon T., et al.
Publicado: (2019) -
Convolutional Neural Networks for Challenges in Automated Nuclide Identification
por: Turner, Anthony N., et al.
Publicado: (2021) -
Stochastic gradient descent optimisation for convolutional neural network for medical image segmentation
por: Nagendram, Sanam, et al.
Publicado: (2023) -
Automated COVID-19 detection with convolutional neural networks
por: Dumakude, Aphelele, et al.
Publicado: (2023)