Cargando…

Temperature compensation design and experiment for a giant magnetostrictive actuator

Because the performance of giant magnetostrictive materials (GMMs) can vary at different temperatures, the positioning accuracy of a giant magnetostrictive actuator is affected by heat. In this work, a new simplified control strategy under compulsory water cooling is proposed to maintain a constant...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Zhangrong, Sui, Xiaomei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794555/
https://www.ncbi.nlm.nih.gov/pubmed/33420274
http://dx.doi.org/10.1038/s41598-020-80460-5
Descripción
Sumario:Because the performance of giant magnetostrictive materials (GMMs) can vary at different temperatures, the positioning accuracy of a giant magnetostrictive actuator is affected by heat. In this work, a new simplified control strategy under compulsory water cooling is proposed to maintain a constant GMM temperature. Based on this strategy, a coupled turbulent flow field and temperature field finite element model is created for a GMM smart component. The model is simulated using COMSOL Multiphysics software version 5.3. Through simulations, the temperature field distribution of GMM smart components is analysed under different drive input currents and cooling water flow rates. Based on the obtained simulation results, a GMM intelligent component temperature control device is constructed. The experimental results are in good agreement with the simulation results; a thermostatic control effect is achieved in the thermostat of the giant magnetostrictive rod. Thus, the proposed temperature control strategy is proven effective via simulations and experiments.