Cargando…
Robust Species Distribution Mapping of Crop Mixtures Using Color Images and Convolutional Neural Networks
Crop mixtures are often beneficial in crop rotations to enhance resource utilization and yield stability. While targeted management, dependent on the local species composition, has the potential to increase the crop value, it comes at a higher expense in terms of field surveys. As fine-grained speci...
Autores principales: | Skovsen, Søren Kelstrup, Laursen, Morten Stigaard, Kristensen, Rebekka Kjeldgaard, Rasmussen, Jim, Dyrmann, Mads, Eriksen, Jørgen, Gislum, René, Jørgensen, Rasmus Nyholm, Karstoft, Henrik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794678/ https://www.ncbi.nlm.nih.gov/pubmed/33383904 http://dx.doi.org/10.3390/s21010175 |
Ejemplares similares
-
Estimation of the Botanical Composition of Clover-Grass Leys from RGB Images Using Data Simulation and Fully Convolutional Neural Networks
por: Skovsen, Søren, et al.
Publicado: (2017) -
Weed Classification Using Explainable Multi-Resolution Slot Attention
por: Farkhani, Sadaf, et al.
Publicado: (2021) -
Designing and Testing a UAV Mapping System for Agricultural Field Surveying
por: Christiansen, Martin Peter, et al.
Publicado: (2017) -
A Novel Locating System for Cereal Plant Stem Emerging Points’ Detection Using a Convolutional Neural Network
por: Karimi, Hadi, et al.
Publicado: (2018) -
FieldSAFE: Dataset for Obstacle Detection in Agriculture
por: Kragh, Mikkel Fly, et al.
Publicado: (2017)