Cargando…
Monocular Depth Estimation with Joint Attention Feature Distillation and Wavelet-Based Loss Function
Depth estimation is a crucial component in many 3D vision applications. Monocular depth estimation is gaining increasing interest due to flexible use and extremely low system requirements, but inherently ill-posed and ambiguous characteristics still cause unsatisfactory estimation results. This pape...
Autores principales: | Liu, Peng, Zhang, Zonghua, Meng, Zhaozong, Gao, Nan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794707/ https://www.ncbi.nlm.nih.gov/pubmed/33374278 http://dx.doi.org/10.3390/s21010054 |
Ejemplares similares
-
Joint Soft–Hard Attention for Self-Supervised Monocular Depth Estimation
por: Fan, Chao, et al.
Publicado: (2021) -
Calibration of the Relative Orientation between Multiple Depth Cameras Based on a Three-Dimensional Target
por: Liu, Zhe, et al.
Publicado: (2019) -
Deep Monocular Depth Estimation Based on Content and Contextual Features
por: Abdulwahab, Saddam, et al.
Publicado: (2023) -
Online supervised attention-based recurrent depth estimation from monocular video
por: Maslov, Dmitrii, et al.
Publicado: (2020) -
GFI-Net: Global Feature Interaction Network for Monocular Depth Estimation
por: Zhang, Cong, et al.
Publicado: (2023)