Cargando…
Molecular Bases of Fruit Quality in Prunus Species: An Integrated Genomic, Transcriptomic, and Metabolic Review with a Breeding Perspective
In plants, fruit ripening is a coordinated developmental process that requires the change in expression of hundreds to thousands of genes to modify many biochemical and physiological signal cascades such as carbohydrate and organic acid metabolism, cell wall restructuring, ethylene production, stres...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794732/ https://www.ncbi.nlm.nih.gov/pubmed/33396946 http://dx.doi.org/10.3390/ijms22010333 |
_version_ | 1783634278277447680 |
---|---|
author | García-Gómez, Beatriz E. Salazar, Juan A. Nicolás-Almansa, María Razi, Mitra Rubio, Manuel Ruiz, David Martínez-Gómez, Pedro |
author_facet | García-Gómez, Beatriz E. Salazar, Juan A. Nicolás-Almansa, María Razi, Mitra Rubio, Manuel Ruiz, David Martínez-Gómez, Pedro |
author_sort | García-Gómez, Beatriz E. |
collection | PubMed |
description | In plants, fruit ripening is a coordinated developmental process that requires the change in expression of hundreds to thousands of genes to modify many biochemical and physiological signal cascades such as carbohydrate and organic acid metabolism, cell wall restructuring, ethylene production, stress response, and organoleptic compound formation. In Prunus species (including peaches, apricots, plums, and cherries), fruit ripening leads to the breakdown of complex carbohydrates into sugars, fruit firmness reductions (softening by cell wall degradation and cuticle properties alteration), color changes (loss of green color by chlorophylls degradation and increase in non-photosynthetic pigments like anthocyanins and carotenoids), acidity decreases, and aroma increases (the production and release of organic volatile compounds). Actually, the level of information of molecular events at the transcriptional, biochemical, hormonal, and metabolite levels underlying ripening in Prunus fruits has increased considerably. However, we still poorly understand the molecular switch that occurs during the transition from unripe to ripe fruits. The objective of this review was to analyze of the molecular bases of fruit quality in Prunus species through an integrated metabolic, genomic, transcriptomic, and epigenetic approach to better understand the molecular switch involved in the ripening process with important consequences from a breeding point of view. |
format | Online Article Text |
id | pubmed-7794732 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77947322021-01-10 Molecular Bases of Fruit Quality in Prunus Species: An Integrated Genomic, Transcriptomic, and Metabolic Review with a Breeding Perspective García-Gómez, Beatriz E. Salazar, Juan A. Nicolás-Almansa, María Razi, Mitra Rubio, Manuel Ruiz, David Martínez-Gómez, Pedro Int J Mol Sci Review In plants, fruit ripening is a coordinated developmental process that requires the change in expression of hundreds to thousands of genes to modify many biochemical and physiological signal cascades such as carbohydrate and organic acid metabolism, cell wall restructuring, ethylene production, stress response, and organoleptic compound formation. In Prunus species (including peaches, apricots, plums, and cherries), fruit ripening leads to the breakdown of complex carbohydrates into sugars, fruit firmness reductions (softening by cell wall degradation and cuticle properties alteration), color changes (loss of green color by chlorophylls degradation and increase in non-photosynthetic pigments like anthocyanins and carotenoids), acidity decreases, and aroma increases (the production and release of organic volatile compounds). Actually, the level of information of molecular events at the transcriptional, biochemical, hormonal, and metabolite levels underlying ripening in Prunus fruits has increased considerably. However, we still poorly understand the molecular switch that occurs during the transition from unripe to ripe fruits. The objective of this review was to analyze of the molecular bases of fruit quality in Prunus species through an integrated metabolic, genomic, transcriptomic, and epigenetic approach to better understand the molecular switch involved in the ripening process with important consequences from a breeding point of view. MDPI 2020-12-30 /pmc/articles/PMC7794732/ /pubmed/33396946 http://dx.doi.org/10.3390/ijms22010333 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review García-Gómez, Beatriz E. Salazar, Juan A. Nicolás-Almansa, María Razi, Mitra Rubio, Manuel Ruiz, David Martínez-Gómez, Pedro Molecular Bases of Fruit Quality in Prunus Species: An Integrated Genomic, Transcriptomic, and Metabolic Review with a Breeding Perspective |
title | Molecular Bases of Fruit Quality in Prunus Species: An Integrated Genomic, Transcriptomic, and Metabolic Review with a Breeding Perspective |
title_full | Molecular Bases of Fruit Quality in Prunus Species: An Integrated Genomic, Transcriptomic, and Metabolic Review with a Breeding Perspective |
title_fullStr | Molecular Bases of Fruit Quality in Prunus Species: An Integrated Genomic, Transcriptomic, and Metabolic Review with a Breeding Perspective |
title_full_unstemmed | Molecular Bases of Fruit Quality in Prunus Species: An Integrated Genomic, Transcriptomic, and Metabolic Review with a Breeding Perspective |
title_short | Molecular Bases of Fruit Quality in Prunus Species: An Integrated Genomic, Transcriptomic, and Metabolic Review with a Breeding Perspective |
title_sort | molecular bases of fruit quality in prunus species: an integrated genomic, transcriptomic, and metabolic review with a breeding perspective |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794732/ https://www.ncbi.nlm.nih.gov/pubmed/33396946 http://dx.doi.org/10.3390/ijms22010333 |
work_keys_str_mv | AT garciagomezbeatrize molecularbasesoffruitqualityinprunusspeciesanintegratedgenomictranscriptomicandmetabolicreviewwithabreedingperspective AT salazarjuana molecularbasesoffruitqualityinprunusspeciesanintegratedgenomictranscriptomicandmetabolicreviewwithabreedingperspective AT nicolasalmansamaria molecularbasesoffruitqualityinprunusspeciesanintegratedgenomictranscriptomicandmetabolicreviewwithabreedingperspective AT razimitra molecularbasesoffruitqualityinprunusspeciesanintegratedgenomictranscriptomicandmetabolicreviewwithabreedingperspective AT rubiomanuel molecularbasesoffruitqualityinprunusspeciesanintegratedgenomictranscriptomicandmetabolicreviewwithabreedingperspective AT ruizdavid molecularbasesoffruitqualityinprunusspeciesanintegratedgenomictranscriptomicandmetabolicreviewwithabreedingperspective AT martinezgomezpedro molecularbasesoffruitqualityinprunusspeciesanintegratedgenomictranscriptomicandmetabolicreviewwithabreedingperspective |