Cargando…
Application of 3D Scanning as an Indirect Method to Analyze and Eliminate Errors on the Manufactured Yoke-Type Forgings Forged in SMED Device on Modernized Crank Press
This article proposes an indirect measurement method based on a dimensional and shape analysis of forgings for the evaluation of the manufacture and the proper operation of the key elements of the crank press, in which after modernization, a quick tool assembly based on SMED (Single Minute Exchange...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794871/ https://www.ncbi.nlm.nih.gov/pubmed/33396909 http://dx.doi.org/10.3390/ma14010137 |
Sumario: | This article proposes an indirect measurement method based on a dimensional and shape analysis of forgings for the evaluation of the manufacture and the proper operation of the key elements of the crank press, in which after modernization, a quick tool assembly based on SMED (Single Minute Exchange of Die) was implemented. As a result of the introduced changes aiming at improving the forging aggregate and increasing the production efficiency, errors were observed on the manufactured products-forgings in the form of twists and joggles. In order to solve the problem, a lot of advanced methods was used, including: dynamic system of deformation analysis, numerical modeling and as well as dimensional and shape analysis by 3d scanning. Despite the above, this approach (classic way) did not solve the problem. A proprietary method with the use of 3D reverse scanning was proposed, which allows to solve the problem of forgings errors. Based on the measurement results and analyses for a few variants of production cycles, the necessary changes were obtained, making it possible to minimize the errors and obtain proper products in respect of geometry and quality. |
---|