Cargando…
Salinity Effects on Guard Cell Proteome in Chenopodium quinoa
Epidermal fragments enriched in guard cells (GCs) were isolated from the halophyte quinoa (Chenopodium quinoa Wild.) species, and the response at the proteome level was studied after salinity treatment of 300 mM NaCl for 3 weeks. In total, 2147 proteins were identified, of which 36% were differentia...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794931/ https://www.ncbi.nlm.nih.gov/pubmed/33406687 http://dx.doi.org/10.3390/ijms22010428 |
_version_ | 1783634324645478400 |
---|---|
author | Rasouli, Fatemeh Kiani-Pouya, Ali Shabala, Lana Li, Leiting Tahir, Ayesha Yu, Min Hedrich, Rainer Chen, Zhonghua Wilson, Richard Zhang, Heng Shabala, Sergey |
author_facet | Rasouli, Fatemeh Kiani-Pouya, Ali Shabala, Lana Li, Leiting Tahir, Ayesha Yu, Min Hedrich, Rainer Chen, Zhonghua Wilson, Richard Zhang, Heng Shabala, Sergey |
author_sort | Rasouli, Fatemeh |
collection | PubMed |
description | Epidermal fragments enriched in guard cells (GCs) were isolated from the halophyte quinoa (Chenopodium quinoa Wild.) species, and the response at the proteome level was studied after salinity treatment of 300 mM NaCl for 3 weeks. In total, 2147 proteins were identified, of which 36% were differentially expressed in response to salinity stress in GCs. Up and downregulated proteins included signaling molecules, enzyme modulators, transcription factors and oxidoreductases. The most abundant proteins induced by salt treatment were desiccation-responsive protein 29B (50-fold), osmotin-like protein OSML13 (13-fold), polycystin-1, lipoxygenase, alpha-toxin, and triacylglycerol lipase (PLAT) domain-containing protein 3-like (eight-fold), and dehydrin early responsive to dehydration (ERD14) (eight-fold). Ten proteins related to the gene ontology term “response to ABA” were upregulated in quinoa GC; this included aspartic protease, phospholipase D and plastid-lipid-associated protein. Additionally, seven proteins in the sucrose–starch pathway were upregulated in the GC in response to salinity stress, and accumulation of tryptophan synthase and L-methionine synthase (enzymes involved in the amino acid biosynthesis) was observed. Exogenous application of sucrose and tryptophan, L-methionine resulted in reduction in stomatal aperture and conductance, which could be advantageous for plants under salt stress. Eight aspartic proteinase proteins were highly upregulated in GCs of quinoa, and exogenous application of pepstatin A (an inhibitor of aspartic proteinase) was accompanied by higher oxidative stress and extremely low stomatal aperture and conductance, suggesting a possible role of aspartic proteinase in mitigating oxidative stress induced by saline conditions. |
format | Online Article Text |
id | pubmed-7794931 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77949312021-01-10 Salinity Effects on Guard Cell Proteome in Chenopodium quinoa Rasouli, Fatemeh Kiani-Pouya, Ali Shabala, Lana Li, Leiting Tahir, Ayesha Yu, Min Hedrich, Rainer Chen, Zhonghua Wilson, Richard Zhang, Heng Shabala, Sergey Int J Mol Sci Article Epidermal fragments enriched in guard cells (GCs) were isolated from the halophyte quinoa (Chenopodium quinoa Wild.) species, and the response at the proteome level was studied after salinity treatment of 300 mM NaCl for 3 weeks. In total, 2147 proteins were identified, of which 36% were differentially expressed in response to salinity stress in GCs. Up and downregulated proteins included signaling molecules, enzyme modulators, transcription factors and oxidoreductases. The most abundant proteins induced by salt treatment were desiccation-responsive protein 29B (50-fold), osmotin-like protein OSML13 (13-fold), polycystin-1, lipoxygenase, alpha-toxin, and triacylglycerol lipase (PLAT) domain-containing protein 3-like (eight-fold), and dehydrin early responsive to dehydration (ERD14) (eight-fold). Ten proteins related to the gene ontology term “response to ABA” were upregulated in quinoa GC; this included aspartic protease, phospholipase D and plastid-lipid-associated protein. Additionally, seven proteins in the sucrose–starch pathway were upregulated in the GC in response to salinity stress, and accumulation of tryptophan synthase and L-methionine synthase (enzymes involved in the amino acid biosynthesis) was observed. Exogenous application of sucrose and tryptophan, L-methionine resulted in reduction in stomatal aperture and conductance, which could be advantageous for plants under salt stress. Eight aspartic proteinase proteins were highly upregulated in GCs of quinoa, and exogenous application of pepstatin A (an inhibitor of aspartic proteinase) was accompanied by higher oxidative stress and extremely low stomatal aperture and conductance, suggesting a possible role of aspartic proteinase in mitigating oxidative stress induced by saline conditions. MDPI 2021-01-04 /pmc/articles/PMC7794931/ /pubmed/33406687 http://dx.doi.org/10.3390/ijms22010428 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rasouli, Fatemeh Kiani-Pouya, Ali Shabala, Lana Li, Leiting Tahir, Ayesha Yu, Min Hedrich, Rainer Chen, Zhonghua Wilson, Richard Zhang, Heng Shabala, Sergey Salinity Effects on Guard Cell Proteome in Chenopodium quinoa |
title | Salinity Effects on Guard Cell Proteome in Chenopodium quinoa |
title_full | Salinity Effects on Guard Cell Proteome in Chenopodium quinoa |
title_fullStr | Salinity Effects on Guard Cell Proteome in Chenopodium quinoa |
title_full_unstemmed | Salinity Effects on Guard Cell Proteome in Chenopodium quinoa |
title_short | Salinity Effects on Guard Cell Proteome in Chenopodium quinoa |
title_sort | salinity effects on guard cell proteome in chenopodium quinoa |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794931/ https://www.ncbi.nlm.nih.gov/pubmed/33406687 http://dx.doi.org/10.3390/ijms22010428 |
work_keys_str_mv | AT rasoulifatemeh salinityeffectsonguardcellproteomeinchenopodiumquinoa AT kianipouyaali salinityeffectsonguardcellproteomeinchenopodiumquinoa AT shabalalana salinityeffectsonguardcellproteomeinchenopodiumquinoa AT lileiting salinityeffectsonguardcellproteomeinchenopodiumquinoa AT tahirayesha salinityeffectsonguardcellproteomeinchenopodiumquinoa AT yumin salinityeffectsonguardcellproteomeinchenopodiumquinoa AT hedrichrainer salinityeffectsonguardcellproteomeinchenopodiumquinoa AT chenzhonghua salinityeffectsonguardcellproteomeinchenopodiumquinoa AT wilsonrichard salinityeffectsonguardcellproteomeinchenopodiumquinoa AT zhangheng salinityeffectsonguardcellproteomeinchenopodiumquinoa AT shabalasergey salinityeffectsonguardcellproteomeinchenopodiumquinoa |