Cargando…
Machine-Learning Classification of a Number of Contaminant Sources in an Urban Water Network
In the case of a contamination event in water distribution networks, several studies have considered different methods to determine contamination scenario information. It would be greatly beneficial to know the exact number of contaminant injection locations since some methods can only be applied in...
Autores principales: | Lučin, Ivana, Grbčić, Luka, Čarija, Zoran, Kranjčević, Lado |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794947/ https://www.ncbi.nlm.nih.gov/pubmed/33401513 http://dx.doi.org/10.3390/s21010245 |
Ejemplares similares
-
A Machine Learning-Based Algorithm for Water Network Contamination Source Localization
por: Grbčić, Luka, et al.
Publicado: (2020) -
Assessment of head loss coefficients for water turbine intake trash-racks by numerical modeling
por: Lučin, Ivana, et al.
Publicado: (2019) -
Machine Learning and Simulation-Optimization Coupling for Water Distribution Network Contamination Source Detection
por: Grbčić, Luka, et al.
Publicado: (2021) -
Tracking Major Sources of Water Contamination Using Machine Learning
por: Wu, Jianyong, et al.
Publicado: (2021) -
Impacts of Atmospheric and Anthropogenic Factors on Microbiological Pollution of the Recreational Coastal Beaches Neighboring Shipping Ports
por: Kraus, Romina, et al.
Publicado: (2022)