Cargando…
On-Device Deep Personalization for Robust Activity Data Collection †
One of the biggest challenges of activity data collection is the need to rely on users and keep them engaged to continually provide labels. Recent breakthroughs in mobile platforms have proven effective in bringing deep neural networks powered intelligence into mobile devices. This study proposes a...
Autores principales: | Mairittha, Nattaya, Mairittha, Tittaya, Inoue, Sozo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794961/ https://www.ncbi.nlm.nih.gov/pubmed/33374809 http://dx.doi.org/10.3390/s21010041 |
Ejemplares similares
-
On-Device Deep Learning Inference for Efficient Activity Data Collection
por: Mairittha, Nattaya, et al.
Publicado: (2019) -
Automatic Labeled Dialogue Generation for Nursing Record Systems
por: Mairittha, Tittaya, et al.
Publicado: (2020) -
Evaluating a Spoken Dialogue System for Recording Systems of Nursing Care
por: Mairittha, Tittaya, et al.
Publicado: (2019) -
A Method for Sensor-Based Activity Recognition in Missing Data Scenario
por: Hossain, Tahera, et al.
Publicado: (2020) -
Optimizing Forecasted Activity Notifications with Reinforcement Learning
por: Fikry, Muhammad, et al.
Publicado: (2023)