Cargando…
Low-Illumination Image Enhancement in the Space Environment Based on the DC-WGAN Algorithm
Owing to insufficient illumination of the space station, the image information collected by the intelligent robot will be degraded, and it will not be able to accurately identify the tools required for the robot’s on-orbit maintenance. This situation increases the difficulty of the robot’s maintenan...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795134/ https://www.ncbi.nlm.nih.gov/pubmed/33406689 http://dx.doi.org/10.3390/s21010286 |
_version_ | 1783634373122195456 |
---|---|
author | Zhang, Minglu Zhang, Yan Jiang, Zhihong Lv, Xiaoling Guo, Ce |
author_facet | Zhang, Minglu Zhang, Yan Jiang, Zhihong Lv, Xiaoling Guo, Ce |
author_sort | Zhang, Minglu |
collection | PubMed |
description | Owing to insufficient illumination of the space station, the image information collected by the intelligent robot will be degraded, and it will not be able to accurately identify the tools required for the robot’s on-orbit maintenance. This situation increases the difficulty of the robot’s maintenance in a low-illumination environment. We proposes a novel enhancement method for images under low-illumination, namely, a deep learning algorithm based on the combination of deep convolutional and Wasserstein generative adversarial networks (DC-WGAN) in CIELAB color space. The original low-illuminance image is converted from the RGB space to the CIELAB color space which is relatively close to human vision, to accurately estimate the illumination image, and effectively reduce the effect of uneven illumination. DC-WGAN is applied to enhance the brightness component by increasing the width of the generation network to obtain more image features. Subsequently, the LAB is converted into RGB space to obtain the final enhanced image. The feasibility of the algorithm is verified by experiments on low-illuminance image under general, special, and actual conditions and comparing the experimental results with four commonly used algorithms. This study lays a technical foundation for robot target recognition and on-orbit maintenance in a space environment. |
format | Online Article Text |
id | pubmed-7795134 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77951342021-01-10 Low-Illumination Image Enhancement in the Space Environment Based on the DC-WGAN Algorithm Zhang, Minglu Zhang, Yan Jiang, Zhihong Lv, Xiaoling Guo, Ce Sensors (Basel) Article Owing to insufficient illumination of the space station, the image information collected by the intelligent robot will be degraded, and it will not be able to accurately identify the tools required for the robot’s on-orbit maintenance. This situation increases the difficulty of the robot’s maintenance in a low-illumination environment. We proposes a novel enhancement method for images under low-illumination, namely, a deep learning algorithm based on the combination of deep convolutional and Wasserstein generative adversarial networks (DC-WGAN) in CIELAB color space. The original low-illuminance image is converted from the RGB space to the CIELAB color space which is relatively close to human vision, to accurately estimate the illumination image, and effectively reduce the effect of uneven illumination. DC-WGAN is applied to enhance the brightness component by increasing the width of the generation network to obtain more image features. Subsequently, the LAB is converted into RGB space to obtain the final enhanced image. The feasibility of the algorithm is verified by experiments on low-illuminance image under general, special, and actual conditions and comparing the experimental results with four commonly used algorithms. This study lays a technical foundation for robot target recognition and on-orbit maintenance in a space environment. MDPI 2021-01-04 /pmc/articles/PMC7795134/ /pubmed/33406689 http://dx.doi.org/10.3390/s21010286 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Minglu Zhang, Yan Jiang, Zhihong Lv, Xiaoling Guo, Ce Low-Illumination Image Enhancement in the Space Environment Based on the DC-WGAN Algorithm |
title | Low-Illumination Image Enhancement in the Space Environment Based on the DC-WGAN Algorithm |
title_full | Low-Illumination Image Enhancement in the Space Environment Based on the DC-WGAN Algorithm |
title_fullStr | Low-Illumination Image Enhancement in the Space Environment Based on the DC-WGAN Algorithm |
title_full_unstemmed | Low-Illumination Image Enhancement in the Space Environment Based on the DC-WGAN Algorithm |
title_short | Low-Illumination Image Enhancement in the Space Environment Based on the DC-WGAN Algorithm |
title_sort | low-illumination image enhancement in the space environment based on the dc-wgan algorithm |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795134/ https://www.ncbi.nlm.nih.gov/pubmed/33406689 http://dx.doi.org/10.3390/s21010286 |
work_keys_str_mv | AT zhangminglu lowilluminationimageenhancementinthespaceenvironmentbasedonthedcwganalgorithm AT zhangyan lowilluminationimageenhancementinthespaceenvironmentbasedonthedcwganalgorithm AT jiangzhihong lowilluminationimageenhancementinthespaceenvironmentbasedonthedcwganalgorithm AT lvxiaoling lowilluminationimageenhancementinthespaceenvironmentbasedonthedcwganalgorithm AT guoce lowilluminationimageenhancementinthespaceenvironmentbasedonthedcwganalgorithm |