Cargando…

The Status of EGFR Modulates the Effect of miRNA-200c on ZEB1 Expression and Cell Migration in Glioblastoma Cells

Migration of glioblastoma cells into surrounding tissue is one of the main features that makes this tumor incurable. We evaluated whole-genome miRNA expression profiling associated with different EGFR amplification patterns in 30 cases of primary glioblastoma. From the 64 miRNAs that showed differen...

Descripción completa

Detalles Bibliográficos
Autores principales: Muñoz-Hidalgo, Lisandra, San-Miguel, Teresa, Megías, Javier, Serna, Eva, Calabuig-Fariñas, Silvia, Monleón, Daniel, Gil-Benso, Rosario, Cerdá-Nicolás, Miguel, López-Ginés, Concha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795155/
https://www.ncbi.nlm.nih.gov/pubmed/33396457
http://dx.doi.org/10.3390/ijms22010368
Descripción
Sumario:Migration of glioblastoma cells into surrounding tissue is one of the main features that makes this tumor incurable. We evaluated whole-genome miRNA expression profiling associated with different EGFR amplification patterns in 30 cases of primary glioblastoma. From the 64 miRNAs that showed differential expression between tumors with a high level of EGFR amplification and tumors without EGFR amplification, 40% were related with cell migration, being miR-200c the most differentially expressed between these two groups. We investigated the effect of miR-200c on ZEB1 expression and cell migration in an in vitro transfection model with a miR-200c mimic, a miR-200c inhibitor and siRNA targeting EGFR in three short-term cultures with different levels of EGFR amplification obtained from resected glioblastomas. The cell culture with the highest EGFR amplification level presented the lowest miR-200c expression and the status of EGFR modulated the effect of miR-200c on ZEB1 expression. Silencing EGFR led to miR-200c upregulation and ZEB1 downregulation in transfected cultures, except in the presence of high levels of EGFR. Likewise, miR-200c upregulation decreased ZEB1 expression and inhibited cell migration, especially when EGFR was not amplified. Our results suggest that modulating miR-200c may serve as a novel therapeutic approach for glioblastoma depending on EGFR status.