Cargando…
High-Molecular-Weight Glutenin Subunits: Genetics, Structures, and Relation to End Use Qualities
High-molecular-weight glutenin subunits (HMW-GSs) are storage proteins present in the starchy endosperm cells of wheat grain. Encoding the synthesis of HMW-GS, the Glu-1 loci located on the long arms of group 1 chromosomes of the hexaploid wheat (1A, 1B, and 1D) present multiple allelism. In hexaplo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795185/ https://www.ncbi.nlm.nih.gov/pubmed/33375389 http://dx.doi.org/10.3390/ijms22010184 |
Sumario: | High-molecular-weight glutenin subunits (HMW-GSs) are storage proteins present in the starchy endosperm cells of wheat grain. Encoding the synthesis of HMW-GS, the Glu-1 loci located on the long arms of group 1 chromosomes of the hexaploid wheat (1A, 1B, and 1D) present multiple allelism. In hexaploid wheat cultivars, almost all of them express 3 to 5 HMW-GSs and the 1Ay gene is always silent. Though HMW-GSs are the minor components in gluten, they are crucial for dough properties, and certain HMW-GSs make more positive contributions than others. The HMW-GS acts as a “chain extender” and provides a disulfide-bonded backbone in gluten network. Hydrogen bonds mediated by glutamine side chains are also crucial for stabilizing the gluten structure. In most cases, HMW-GSs with additional or less cysteines are related to the formation of relatively more or less interchain disulfide bonds and HMW-GSs also affect the gluten secondary structures, which in turn impact the end use qualities of dough. |
---|