Cargando…

A Wrist Sensor Sleep Posture Monitoring System: An Automatic Labeling Approach

In the hospital, a sleep postures monitoring system is usually adopted to transform sensing signals into sleep behaviors. However, a home-care sleep posture monitoring system needs to be user friendly. In this paper, we present iSleePost—a user-friendly home-care intelligent sleep posture monitoring...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeng, Po-Yuan, Wang, Li-Chun, Hu, Chaur-Jong, Wu, Dean
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795231/
https://www.ncbi.nlm.nih.gov/pubmed/33401750
http://dx.doi.org/10.3390/s21010258
Descripción
Sumario:In the hospital, a sleep postures monitoring system is usually adopted to transform sensing signals into sleep behaviors. However, a home-care sleep posture monitoring system needs to be user friendly. In this paper, we present iSleePost—a user-friendly home-care intelligent sleep posture monitoring system. We address the labor-intensive labeling issue of traditional machine learning approaches in the training phase. Our proposed mobile health (mHealth) system leverages the communications and computation capabilities of mobile phones for provisioning a continuous sleep posture monitoring service. Our experiments show that iSleePost can achieve up to 85 percent accuracy in recognizing sleep postures. More importantly, iSleePost demonstrates that an easy-to-wear wrist sensor can accurately quantify sleep postures after our designed training phase. It is our hope that the design concept of iSleePost can shed some lights on quantifying human sleep postures in the future.