Cargando…
Deep Learning Based Evaluation of Spermatozoid Motility for Artificial Insemination
We propose a deep learning method based on the Region Based Convolutional Neural Networks (R-CNN) architecture for the evaluation of sperm head motility in human semen videos. The neural network performs the segmentation of sperm heads, while the proposed central coordinate tracking algorithm allows...
Autores principales: | Valiuškaitė, Viktorija, Raudonis, Vidas, Maskeliūnas, Rytis, Damaševičius, Robertas, Krilavičius, Tomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795243/ https://www.ncbi.nlm.nih.gov/pubmed/33374461 http://dx.doi.org/10.3390/s21010072 |
Ejemplares similares
-
Pedestrian and Animal Recognition Using Doppler Radar Signature and Deep Learning
por: Buchman, Danny, et al.
Publicado: (2022) -
HEMIGEN: Human Embryo Image Generator Based on Generative Adversarial Networks
por: Dirvanauskas, Darius, et al.
Publicado: (2019) -
A Mobile Application for Smart Computer-Aided Self-Administered Testing of Cognition, Speech, and Motor Impairment
por: Lauraitis, Andrius, et al.
Publicado: (2020) -
Analysis of Features of Alzheimer’s Disease: Detection of Early Stage from Functional Brain Changes in Magnetic Resonance Images Using a Finetuned ResNet18 Network
por: Odusami, Modupe, et al.
Publicado: (2021) -
Reply to Nicholas et al. Using a ResNet-18 Network to Detect Features of Alzheimer’s Disease on Functional Magnetic Resonance Imaging: A Failed Replication. Comment on “Odusami et al. Analysis of Features of Alzheimer’s Disease: Detection of Early Stage from Functional Brain Changes in Magnetic Resonance Images Using a Finetuned ResNet18 Network. Diagnostics 2021, 11, 1071”
por: Odusami, Modupe, et al.
Publicado: (2022)