Cargando…
Increasing the Density of Laboratory Measures for Machine Learning Applications
Background. The imputation of missingness is a key step in Electronic Health Records (EHR) mining, as it can significantly affect the conclusions derived from the downstream analysis in translational medicine. The missingness of laboratory values in EHR is not at random, yet imputation techniques te...
Autores principales: | Abedi, Vida, Li, Jiang, Shivakumar, Manu K., Avula, Venkatesh, Chaudhary, Durgesh P., Shellenberger, Matthew J., Khara, Harshit S., Zhang, Yanfei, Lee, Ming Ta Michael, Wolk, Donna M., Yeasin, Mohammed, Hontecillas, Raquel, Bassaganya-Riera, Josep, Zand, Ramin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795258/ https://www.ncbi.nlm.nih.gov/pubmed/33396741 http://dx.doi.org/10.3390/jcm10010103 |
Ejemplares similares
-
Variants at the MHC Region Associate With Susceptibility to Clostridioides difficile Infection: A Genome-Wide Association Study Using Comprehensive Electronic Health Records
por: Li, Jiang, et al.
Publicado: (2021) -
Imputation of missing values for electronic health record laboratory data
por: Li, Jiang, et al.
Publicado: (2021) -
An integrated pipeline for prediction of Clostridioides difficile infection
por: Li, Jiang, et al.
Publicado: (2023) -
Malnutrition, Health and the Role of Machine Learning in Clinical Setting
por: Sharma, Vaibhav, et al.
Publicado: (2020) -
Challenges in Personalized Nutrition and Health
por: Verma, Meghna, et al.
Publicado: (2018)