Cargando…

A Comparison of the Gluco-Regulatory Responses to High-Intensity Interval Exercise and Resistance Exercise

High-intensity interval exercise and resistance exercise both effectively lower blood glucose; however, it is not clear whether different regulatory mechanisms exist. This randomised cross-over study compared the acute gluco-regulatory and the physiological responses of high-intensity interval exerc...

Descripción completa

Detalles Bibliográficos
Autores principales: Gordon, Brett A., Taylor, Caroline J., Church, Jarrod E., Cousins, Stephen D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795282/
https://www.ncbi.nlm.nih.gov/pubmed/33401694
http://dx.doi.org/10.3390/ijerph18010287
Descripción
Sumario:High-intensity interval exercise and resistance exercise both effectively lower blood glucose; however, it is not clear whether different regulatory mechanisms exist. This randomised cross-over study compared the acute gluco-regulatory and the physiological responses of high-intensity interval exercise and resistance exercise. Sixteen (eight males and eight females) recreationally active individuals, aged (mean ± SD) 22 ± 7 years, participated with a seven-day period between interventions. The high-intensity interval exercise trial consisted of twelve, 30 s cycling intervals at 80% of peak power capacity and 90 s active recovery. The resistance exercise trial consisted of four sets of 10 repetitions for three lower-limb exercises at 80% 1-RM, matched for duration of high-intensity interval exercise. Exercise was performed after an overnight fast, with blood samples collected every 30 min, for two hours after exercise. There was a significant interaction between time and intervention for glucose (p = 0.02), which was, on average (mean ± SD), 0.7 ± 0.7 mmol∙L(−1) higher following high-intensity interval exercise, as compared to resistance exercise. Cortisol concentration over time was affected by intervention (p = 0.03), with cortisol 70 ± 103 ng∙mL(−1) higher (p = 0.015), on average, following high-intensity interval exercise. Resistance exercise did not induce the acute rise in glucose that was induced by high-intensity interval exercise and appears to be an appropriate alternative to positively regulate blood glucose.