Cargando…

OsMre11 Is Required for Mitosis during Rice Growth and Development

Meiotic recombination 11 (Mre11) is a relatively conserved nuclease in various species. Mre11 plays important roles in meiosis and DNA damage repair in yeast, humans and Arabidopsis, but little research has been done on mitotic DNA replication and repair in rice. Here, it was found that Mre11 was an...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Miaomiao, Nie, Yanshen, Chen, Yueyue, Zhang, Xiufeng, Zhao, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795355/
https://www.ncbi.nlm.nih.gov/pubmed/33375295
http://dx.doi.org/10.3390/ijms22010169
Descripción
Sumario:Meiotic recombination 11 (Mre11) is a relatively conserved nuclease in various species. Mre11 plays important roles in meiosis and DNA damage repair in yeast, humans and Arabidopsis, but little research has been done on mitotic DNA replication and repair in rice. Here, it was found that Mre11 was an extensively expressed gene among the various tissues and organs of rice, and loss-of-function of Mre11 resulted in severe defects of vegetative and reproductive growth, including dwarf plants, abnormally developed male and female gametes, and completely abortive seeds. The decreased number of cells in the apical meristem and the appearance of chromosomal fragments and bridges during the mitotic cell cycle in rice mre11 mutant roots revealed an essential role of OsMre11. Further research showed that DNA replication was suppressed, and a large number of DNA strand breaks occurred during the mitotic cell cycle of rice mre11 mutants. The expression of OsMre11 was up-regulated with the treatment of hydroxyurea and methyl methanesulfonate. Moreover, OsMre11 could form a complex with OsRad50 and OsNbs1, and they might function together in non-homologous end joining and homologous recombination repair pathways. These results indicated that OsMre11 plays vital roles in DNA replication and damage repair of the mitotic cell cycle, which ensure the development and fertility of rice by maintaining genome stability.