Cargando…
Online Multiple Athlete Tracking with Pose-Based Long-Term Temporal Dependencies
This paper addresses the Multi-Athlete Tracking (MAT) problem, which plays a crucial role in sports video analysis. There exist specific challenges in MAT, e.g., athletes share a high similarity in appearance and frequently occlude with each other, making existing approaches not applicable for this...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795433/ https://www.ncbi.nlm.nih.gov/pubmed/33396776 http://dx.doi.org/10.3390/s21010197 |
_version_ | 1783634443979718656 |
---|---|
author | Kong, Longteng Zhu, Mengxiao Ran, Nan Liu, Qingjie He, Rui |
author_facet | Kong, Longteng Zhu, Mengxiao Ran, Nan Liu, Qingjie He, Rui |
author_sort | Kong, Longteng |
collection | PubMed |
description | This paper addresses the Multi-Athlete Tracking (MAT) problem, which plays a crucial role in sports video analysis. There exist specific challenges in MAT, e.g., athletes share a high similarity in appearance and frequently occlude with each other, making existing approaches not applicable for this task. To address this problem, we propose a novel online multiple athlete tracking approach which make use of long-term temporal pose dynamics for better distinguishing different athletes. Firstly, we design a Pose-based Triple Stream Network (PTSN) based on Long Short-Term Memory (LSTM) networks, capable of modeling long-term temporal pose dynamics of athletes, including pose-based appearance, motion and athletes’ interaction clues. Secondly, we propose a multi-state online matching algorithm based on bipartite graph matching and similarity scores produced by PTSN. It is robust to noisy detections and occlusions due to the reliable transitions of multiple detection states. We evaluate our method on the APIDIS, NCAA Basketball and VolleyTrack databases, and the experiment results demonstrate its effectiveness. |
format | Online Article Text |
id | pubmed-7795433 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77954332021-01-10 Online Multiple Athlete Tracking with Pose-Based Long-Term Temporal Dependencies Kong, Longteng Zhu, Mengxiao Ran, Nan Liu, Qingjie He, Rui Sensors (Basel) Article This paper addresses the Multi-Athlete Tracking (MAT) problem, which plays a crucial role in sports video analysis. There exist specific challenges in MAT, e.g., athletes share a high similarity in appearance and frequently occlude with each other, making existing approaches not applicable for this task. To address this problem, we propose a novel online multiple athlete tracking approach which make use of long-term temporal pose dynamics for better distinguishing different athletes. Firstly, we design a Pose-based Triple Stream Network (PTSN) based on Long Short-Term Memory (LSTM) networks, capable of modeling long-term temporal pose dynamics of athletes, including pose-based appearance, motion and athletes’ interaction clues. Secondly, we propose a multi-state online matching algorithm based on bipartite graph matching and similarity scores produced by PTSN. It is robust to noisy detections and occlusions due to the reliable transitions of multiple detection states. We evaluate our method on the APIDIS, NCAA Basketball and VolleyTrack databases, and the experiment results demonstrate its effectiveness. MDPI 2020-12-30 /pmc/articles/PMC7795433/ /pubmed/33396776 http://dx.doi.org/10.3390/s21010197 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kong, Longteng Zhu, Mengxiao Ran, Nan Liu, Qingjie He, Rui Online Multiple Athlete Tracking with Pose-Based Long-Term Temporal Dependencies |
title | Online Multiple Athlete Tracking with Pose-Based Long-Term Temporal Dependencies |
title_full | Online Multiple Athlete Tracking with Pose-Based Long-Term Temporal Dependencies |
title_fullStr | Online Multiple Athlete Tracking with Pose-Based Long-Term Temporal Dependencies |
title_full_unstemmed | Online Multiple Athlete Tracking with Pose-Based Long-Term Temporal Dependencies |
title_short | Online Multiple Athlete Tracking with Pose-Based Long-Term Temporal Dependencies |
title_sort | online multiple athlete tracking with pose-based long-term temporal dependencies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795433/ https://www.ncbi.nlm.nih.gov/pubmed/33396776 http://dx.doi.org/10.3390/s21010197 |
work_keys_str_mv | AT konglongteng onlinemultipleathletetrackingwithposebasedlongtermtemporaldependencies AT zhumengxiao onlinemultipleathletetrackingwithposebasedlongtermtemporaldependencies AT rannan onlinemultipleathletetrackingwithposebasedlongtermtemporaldependencies AT liuqingjie onlinemultipleathletetrackingwithposebasedlongtermtemporaldependencies AT herui onlinemultipleathletetrackingwithposebasedlongtermtemporaldependencies |