Cargando…

Concept Design, Development and Preliminary Physical and Chemical Characterization of Tamoxifen-Guided-Mesoporous Silica Nanoparticles

Conventional chemotherapies used for breast cancer (BC) treatment are non-selective, attacking both healthy and cancerous cells. Therefore, new technologies that enhance drug efficacy and ameliorate the off-target toxic effects exhibited by currently used anticancer drugs are urgently needed. Here w...

Descripción completa

Detalles Bibliográficos
Autores principales: Day, Candace M., Sweetman, Martin J., Hickey, Shane M., Song, Yunmei, Liu, Yongjun, Zhang, Na, Plush, Sally E., Garg, Sanjay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795496/
https://www.ncbi.nlm.nih.gov/pubmed/33406699
http://dx.doi.org/10.3390/molecules26010219
Descripción
Sumario:Conventional chemotherapies used for breast cancer (BC) treatment are non-selective, attacking both healthy and cancerous cells. Therefore, new technologies that enhance drug efficacy and ameliorate the off-target toxic effects exhibited by currently used anticancer drugs are urgently needed. Here we report the design and synthesis of novel mesoporous silica nanoparticles (MSNs) equipped with the hormonal drug tamoxifen (TAM) to facilitate guidance towards estrogen receptors (ERs) which are upregulated in breast tumours. TAM is linked to the MSNs using a poly-ʟ-histidine (PLH) polymer as a pH-sensitive gatekeeper, to ensure efficient delivery of encapsulated materials within the pores. XRD, HR-TEM, DLS, SEM, FT-IR and BET techniques were used to confirm the successful fabrication of MSNs. The MSNs have a high surface area (>1000 m(2)/g); and a mean particle size of 150 nm, which is an appropriate size to allow the penetration of premature blood vessels surrounding breast tumours. Successful surface functionalization was supported by FT-IR, XPS and TGA techniques, with a grafting ratio of approximately 29%. The outcomes of this preliminary work could be used as practical building blocks towards future formulations.