Cargando…
Corrosion Resistance of the CpTi G2 Cellular Lattice with TPMS Architecture for Gas Diffusion Electrodes
The corrosion of materials used in the design of metal-air batteries may shorten their cycle life. Therefore, metal-based materials with enhanced electrochemical stability have attracted much attention. The purpose of this work was to determine the corrosion resistance of commercially pure titanium...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795527/ https://www.ncbi.nlm.nih.gov/pubmed/33375270 http://dx.doi.org/10.3390/ma14010081 |
_version_ | 1783634465973600256 |
---|---|
author | Łosiewicz, Bożena Maszybrocka, Joanna Kubisztal, Julian Skrabalak, Grzegorz Stwora, Andrzej |
author_facet | Łosiewicz, Bożena Maszybrocka, Joanna Kubisztal, Julian Skrabalak, Grzegorz Stwora, Andrzej |
author_sort | Łosiewicz, Bożena |
collection | PubMed |
description | The corrosion of materials used in the design of metal-air batteries may shorten their cycle life. Therefore, metal-based materials with enhanced electrochemical stability have attracted much attention. The purpose of this work was to determine the corrosion resistance of commercially pure titanium Grade 2 (CpTi G2) cellular lattice with the triply periodic minimal surfaces (TPMS) architecture of G80, D80, I-2Y80 in 0.1 M KOH solution saturated with oxygen at 25 °C. To produce CpTi G2 cellular lattices, selective laser melting technology was used which allowed us to obtain 3D cellular lattice structures with a controlled total porosity of 80%. For comparison, the bulk electrode was also investigated. SEM examination and statistical analysis of the surface topography maps of the CpTi G2 cellular lattices with the TPMS architecture revealed much more complex surface morphology compared to the bulk CpTi SLM. Corrosion resistance tests of the obtained materials were conducted using open circuit potential method, Tafel curves, anodic polarization curves, and electrochemical impedance spectroscopy. The highest corrosion resistance and the lowest material consumption per year were revealed for the CpTi G2 cellular lattice with TPMS architecture of G80, which can be proposed as promising material with increased corrosion resistance for gas diffusion in alkaline metal-air batteries. |
format | Online Article Text |
id | pubmed-7795527 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77955272021-01-10 Corrosion Resistance of the CpTi G2 Cellular Lattice with TPMS Architecture for Gas Diffusion Electrodes Łosiewicz, Bożena Maszybrocka, Joanna Kubisztal, Julian Skrabalak, Grzegorz Stwora, Andrzej Materials (Basel) Article The corrosion of materials used in the design of metal-air batteries may shorten their cycle life. Therefore, metal-based materials with enhanced electrochemical stability have attracted much attention. The purpose of this work was to determine the corrosion resistance of commercially pure titanium Grade 2 (CpTi G2) cellular lattice with the triply periodic minimal surfaces (TPMS) architecture of G80, D80, I-2Y80 in 0.1 M KOH solution saturated with oxygen at 25 °C. To produce CpTi G2 cellular lattices, selective laser melting technology was used which allowed us to obtain 3D cellular lattice structures with a controlled total porosity of 80%. For comparison, the bulk electrode was also investigated. SEM examination and statistical analysis of the surface topography maps of the CpTi G2 cellular lattices with the TPMS architecture revealed much more complex surface morphology compared to the bulk CpTi SLM. Corrosion resistance tests of the obtained materials were conducted using open circuit potential method, Tafel curves, anodic polarization curves, and electrochemical impedance spectroscopy. The highest corrosion resistance and the lowest material consumption per year were revealed for the CpTi G2 cellular lattice with TPMS architecture of G80, which can be proposed as promising material with increased corrosion resistance for gas diffusion in alkaline metal-air batteries. MDPI 2020-12-26 /pmc/articles/PMC7795527/ /pubmed/33375270 http://dx.doi.org/10.3390/ma14010081 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Łosiewicz, Bożena Maszybrocka, Joanna Kubisztal, Julian Skrabalak, Grzegorz Stwora, Andrzej Corrosion Resistance of the CpTi G2 Cellular Lattice with TPMS Architecture for Gas Diffusion Electrodes |
title | Corrosion Resistance of the CpTi G2 Cellular Lattice with TPMS Architecture for Gas Diffusion Electrodes |
title_full | Corrosion Resistance of the CpTi G2 Cellular Lattice with TPMS Architecture for Gas Diffusion Electrodes |
title_fullStr | Corrosion Resistance of the CpTi G2 Cellular Lattice with TPMS Architecture for Gas Diffusion Electrodes |
title_full_unstemmed | Corrosion Resistance of the CpTi G2 Cellular Lattice with TPMS Architecture for Gas Diffusion Electrodes |
title_short | Corrosion Resistance of the CpTi G2 Cellular Lattice with TPMS Architecture for Gas Diffusion Electrodes |
title_sort | corrosion resistance of the cpti g2 cellular lattice with tpms architecture for gas diffusion electrodes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795527/ https://www.ncbi.nlm.nih.gov/pubmed/33375270 http://dx.doi.org/10.3390/ma14010081 |
work_keys_str_mv | AT łosiewiczbozena corrosionresistanceofthecptig2cellularlatticewithtpmsarchitectureforgasdiffusionelectrodes AT maszybrockajoanna corrosionresistanceofthecptig2cellularlatticewithtpmsarchitectureforgasdiffusionelectrodes AT kubisztaljulian corrosionresistanceofthecptig2cellularlatticewithtpmsarchitectureforgasdiffusionelectrodes AT skrabalakgrzegorz corrosionresistanceofthecptig2cellularlatticewithtpmsarchitectureforgasdiffusionelectrodes AT stworaandrzej corrosionresistanceofthecptig2cellularlatticewithtpmsarchitectureforgasdiffusionelectrodes |