Cargando…

Space Optimized Plane Wave Imaging for Fast Ultrasonic Inspection with Small Active Aperture: Simulation and Experiment

Plane wave imaging (PWI) is attracting more attention in industrial nondestructive testing and evaluation (NDT&E). To further improve imaging quality and reduce reconstruction time in ultrasonic imaging with a limited active aperture, an optimized PWI algorithm was proposed for rapid ultrasonic...

Descripción completa

Detalles Bibliográficos
Autores principales: Sui, Hao, Xu, Pan, Huang, Jinxing, Zhu, Hongna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795535/
https://www.ncbi.nlm.nih.gov/pubmed/33374334
http://dx.doi.org/10.3390/s21010055
Descripción
Sumario:Plane wave imaging (PWI) is attracting more attention in industrial nondestructive testing and evaluation (NDT&E). To further improve imaging quality and reduce reconstruction time in ultrasonic imaging with a limited active aperture, an optimized PWI algorithm was proposed for rapid ultrasonic inspection, with the comparison of the total focusing method (TFM). The effective area of plane waves and the space weighting factor were defined in order to balance the amplitude of the imaging area. Experiments were carried out to contrast the image quality, with great agreement to the simulation results. Compared with TFM imaging, the space-optimized PWI algorithm demonstrated a wider dynamic detection range and a higher defects amplitude, where the maximum defect amplitude attenuation declined by 6.7 dB and average attenuation on 12 defects decreased by 3.1 dB. In addition, the effects of plane wave numbers on attenuation and reconstruction time were focused on, achieving more than 10 times reduction of reconstruction times over TFM.