Cargando…
Human DDX3X Unwinds Japanese Encephalitis and Zika Viral 5′ Terminal Regions
Flavivirus genus includes many deadly viruses such as the Japanese encephalitis virus (JEV) and Zika virus (ZIKV). The 5′ terminal regions (TR) of flaviviruses interact with human proteins and such interactions are critical for viral replication. One of the human proteins identified to interact with...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795613/ https://www.ncbi.nlm.nih.gov/pubmed/33401776 http://dx.doi.org/10.3390/ijms22010413 |
_version_ | 1783634486387277824 |
---|---|
author | Nelson, Corey Mrozowich, Tyler Gemmill, Darren L. Park, Sean M. Patel, Trushar R. |
author_facet | Nelson, Corey Mrozowich, Tyler Gemmill, Darren L. Park, Sean M. Patel, Trushar R. |
author_sort | Nelson, Corey |
collection | PubMed |
description | Flavivirus genus includes many deadly viruses such as the Japanese encephalitis virus (JEV) and Zika virus (ZIKV). The 5′ terminal regions (TR) of flaviviruses interact with human proteins and such interactions are critical for viral replication. One of the human proteins identified to interact with the 5′ TR of JEV is the DEAD-box helicase, DDX3X. In this study, we in vitro transcribed the 5′ TR of JEV and demonstrated its direct interaction with recombinant DDX3X (K(d) of 1.66 ± 0.21 µM) using microscale thermophoresis (MST). Due to the proposed structural similarities of 5′ and 3′ TRs of flaviviruses, we investigated if the ZIKV 5′ TR could also interact with human DDX3X. Our MST studies suggested that DDX3X recognizes ZIKV 5′ TR with a K(d) of 7.05 ± 0.75 µM. Next, we performed helicase assays that suggested that the binding of DDX3X leads to the unwinding of JEV and ZIKV 5′ TRs. Overall, our data indicate, for the first time, that DDX3X can directly bind and unwind in vitro transcribed flaviviral TRs. In summary, our work indicates that DDX3X could be further explored as a therapeutic target to inhibit Flaviviral replication |
format | Online Article Text |
id | pubmed-7795613 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77956132021-01-10 Human DDX3X Unwinds Japanese Encephalitis and Zika Viral 5′ Terminal Regions Nelson, Corey Mrozowich, Tyler Gemmill, Darren L. Park, Sean M. Patel, Trushar R. Int J Mol Sci Article Flavivirus genus includes many deadly viruses such as the Japanese encephalitis virus (JEV) and Zika virus (ZIKV). The 5′ terminal regions (TR) of flaviviruses interact with human proteins and such interactions are critical for viral replication. One of the human proteins identified to interact with the 5′ TR of JEV is the DEAD-box helicase, DDX3X. In this study, we in vitro transcribed the 5′ TR of JEV and demonstrated its direct interaction with recombinant DDX3X (K(d) of 1.66 ± 0.21 µM) using microscale thermophoresis (MST). Due to the proposed structural similarities of 5′ and 3′ TRs of flaviviruses, we investigated if the ZIKV 5′ TR could also interact with human DDX3X. Our MST studies suggested that DDX3X recognizes ZIKV 5′ TR with a K(d) of 7.05 ± 0.75 µM. Next, we performed helicase assays that suggested that the binding of DDX3X leads to the unwinding of JEV and ZIKV 5′ TRs. Overall, our data indicate, for the first time, that DDX3X can directly bind and unwind in vitro transcribed flaviviral TRs. In summary, our work indicates that DDX3X could be further explored as a therapeutic target to inhibit Flaviviral replication MDPI 2021-01-02 /pmc/articles/PMC7795613/ /pubmed/33401776 http://dx.doi.org/10.3390/ijms22010413 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nelson, Corey Mrozowich, Tyler Gemmill, Darren L. Park, Sean M. Patel, Trushar R. Human DDX3X Unwinds Japanese Encephalitis and Zika Viral 5′ Terminal Regions |
title | Human DDX3X Unwinds Japanese Encephalitis and Zika Viral 5′ Terminal Regions |
title_full | Human DDX3X Unwinds Japanese Encephalitis and Zika Viral 5′ Terminal Regions |
title_fullStr | Human DDX3X Unwinds Japanese Encephalitis and Zika Viral 5′ Terminal Regions |
title_full_unstemmed | Human DDX3X Unwinds Japanese Encephalitis and Zika Viral 5′ Terminal Regions |
title_short | Human DDX3X Unwinds Japanese Encephalitis and Zika Viral 5′ Terminal Regions |
title_sort | human ddx3x unwinds japanese encephalitis and zika viral 5′ terminal regions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795613/ https://www.ncbi.nlm.nih.gov/pubmed/33401776 http://dx.doi.org/10.3390/ijms22010413 |
work_keys_str_mv | AT nelsoncorey humanddx3xunwindsjapaneseencephalitisandzikaviral5terminalregions AT mrozowichtyler humanddx3xunwindsjapaneseencephalitisandzikaviral5terminalregions AT gemmilldarrenl humanddx3xunwindsjapaneseencephalitisandzikaviral5terminalregions AT parkseanm humanddx3xunwindsjapaneseencephalitisandzikaviral5terminalregions AT pateltrusharr humanddx3xunwindsjapaneseencephalitisandzikaviral5terminalregions |