Cargando…

CorrNet: Fine-Grained Emotion Recognition for Video Watching Using Wearable Physiological Sensors

Recognizing user emotions while they watch short-form videos anytime and anywhere is essential for facilitating video content customization and personalization. However, most works either classify a single emotion per video stimuli, or are restricted to static, desktop environments. To address this,...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Tianyi, El Ali, Abdallah, Wang, Chen, Hanjalic, Alan, Cesar, Pablo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795677/
https://www.ncbi.nlm.nih.gov/pubmed/33374281
http://dx.doi.org/10.3390/s21010052
Descripción
Sumario:Recognizing user emotions while they watch short-form videos anytime and anywhere is essential for facilitating video content customization and personalization. However, most works either classify a single emotion per video stimuli, or are restricted to static, desktop environments. To address this, we propose a correlation-based emotion recognition algorithm (CorrNet) to recognize the valence and arousal (V-A) of each instance (fine-grained segment of signals) using only wearable, physiological signals (e.g., electrodermal activity, heart rate). CorrNet takes advantage of features both inside each instance (intra-modality features) and between different instances for the same video stimuli (correlation-based features). We first test our approach on an indoor-desktop affect dataset (CASE), and thereafter on an outdoor-mobile affect dataset (MERCA) which we collected using a smart wristband and wearable eyetracker. Results show that for subject-independent binary classification (high-low), CorrNet yields promising recognition accuracies: [Formula: see text] and [Formula: see text] for V-A on CASE, and [Formula: see text] and [Formula: see text] for V-A on MERCA. Our findings show: (1) instance segment lengths between 1–4 s result in highest recognition accuracies (2) accuracies between laboratory-grade and wearable sensors are comparable, even under low sampling rates (≤64 Hz) (3) large amounts of neutral V-A labels, an artifact of continuous affect annotation, result in varied recognition performance.