Cargando…
Temperature-Modulated Scanning Calorimetry of Melting–Recrystallization of Poly(butylene terephthalate)
The melting and recrystallization behaviors of poly(butylene terephthalate) (PBT) were investigated using temperature-modulated scanning calorimetry in both fast- and conventional slow-scan modes. With this method, the response of multiple transition kinetics, such as melting and recrystallization,...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795849/ https://www.ncbi.nlm.nih.gov/pubmed/33401490 http://dx.doi.org/10.3390/polym13010152 |
Sumario: | The melting and recrystallization behaviors of poly(butylene terephthalate) (PBT) were investigated using temperature-modulated scanning calorimetry in both fast- and conventional slow-scan modes. With this method, the response of multiple transition kinetics, such as melting and recrystallization, can be differentiated by utilizing the difference in the time constants of the kinetics. In addition to the previous result of temperature-modulated fast-scan calorimetry of polyethylene terephthalate (PET), the supporting evidence of another aromatic polyester, PBT, confirmed the behavior of the exothermic process of recrystallization, which proceeds simultaneously with melting on heating scan in the temperature range of double melting peaks starting just above the crystallization temperature up to the main melting peak. Because the crystallization of PBT is much more pronounced than that of PET, similar behavior of recrystallization was obtained by the conventional temperature-modulated differential scanning calorimetry at a slow-scan rate. |
---|