Cargando…
Improved Mechanical and Sound Absorption Properties of Open Cell Silicone Rubber Foam with NaCl as the Pore-Forming Agent
Porous materials hold great potential in the field of sound absorption, but the most abundantly used materials, such as Polyurethane (PU) foam and polyvinyl chloride (PVC) foam, would inevitably bring environmental harms during fabrication. In this study, the nontoxic addition-molded room temperatur...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795880/ https://www.ncbi.nlm.nih.gov/pubmed/33401620 http://dx.doi.org/10.3390/ma14010195 |
Sumario: | Porous materials hold great potential in the field of sound absorption, but the most abundantly used materials, such as Polyurethane (PU) foam and polyvinyl chloride (PVC) foam, would inevitably bring environmental harms during fabrication. In this study, the nontoxic addition-molded room temperature vulcanized silicone rubber is chosen as the matrix, and NaCl particles are chosen as the pore forming agent to prepare open cell foams via the dissolve-separating foaming method. The effect of different amounts of NaCl (0–100 phr) on the cell structure, mechanical and sound absorption properties is investigated and analyzed. The results indicate that the cell structure could be tailored via changing the addition amount of NaCl, and open cell silicon rubber foams could be achieved with more than 20 phr NaCl addition. Open cell silicon foams show the most effective sound absorption for sound waves in middle frequency (1000–2000 Hz), which should be attributed to the improved impedance matching caused by the open cell structures. Additionally, the mechanical properties, including hardness, tensile strength and corresponding elastic properties, gradually decay to a steady value with the increasing addition amount of NaCl. Therefore, open cell silicone rubber foams are capable of sound absorption in middle frequency. |
---|