Cargando…
Data-Driven Method for Predicting Remaining Useful Life of Bearing Based on Bayesian Theory
Bearings are some of the most critical industrial parts and are widely used in various types of mechanical equipment. Bearing health status can have a significant impact on the overall equipment performance, and bearing failures often cause serious economic losses and even casualties. Thus, estimati...
Autores principales: | Gao, Tianhong, Li, Yuxiong, Huang, Xianzhen, Wang, Changli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795917/ https://www.ncbi.nlm.nih.gov/pubmed/33383918 http://dx.doi.org/10.3390/s21010182 |
Ejemplares similares
-
A Double-Channel Hybrid Deep Neural Network Based on CNN and BiLSTM for Remaining Useful Life Prediction
por: Zhao, Chengying, et al.
Publicado: (2020) -
Remaining Useful Life Prediction Method for Bearings Based on LSTM with Uncertainty Quantification
por: Yang, Jinsong, et al.
Publicado: (2022) -
Research on Remaining Useful Life Prediction Method of Rolling Bearing Based on Digital Twin
por: Zhang, Rui, et al.
Publicado: (2022) -
Data-driven remaining useful life prediction based on domain adaptation
por: Wen, Bin cheng, et al.
Publicado: (2021) -
Bearing Remaining Useful Life Prediction Based on Naive Bayes and Weibull Distributions
por: Zhang, Nannan, et al.
Publicado: (2018)