Cargando…
Interpretable Machine Learning Model for Locoregional Relapse Prediction in Oropharyngeal Cancers
SIMPLE SUMMARY: Machine learning may be used to personalize cancer care. However, physicians need interpretability to understand and use a predictive model powered by machine learning. We present a radiomics based model, interpretable for each patient, trained on an American multicentric cohort that...
Autores principales: | Giraud, Paul, Giraud, Philippe, Nicolas, Eliot, Boisselier, Pierre, Alfonsi, Marc, Rives, Michel, Bardet, Etienne, Calugaru, Valentin, Noel, Georges, Chajon, Enrique, Pommier, Pascal, Morelle, Magali, Perrier, Lionel, Liem, Xavier, Burgun, Anita, Bibault, Jean Emmanuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795920/ https://www.ncbi.nlm.nih.gov/pubmed/33379188 http://dx.doi.org/10.3390/cancers13010057 |
Ejemplares similares
-
Integrating Multimodal Radiation Therapy Data into i2b2
por: Zapletal, Eric, et al.
Publicado: (2018) -
The Role of Radiomics in Lung Cancer: From Screening to Treatment and Follow-Up
por: El Ayachy, Radouane, et al.
Publicado: (2021) -
Labeling for Big Data in radiation oncology: The Radiation Oncology Structures ontology
por: Bibault, Jean-Emmanuel, et al.
Publicado: (2018) -
Molecular predictors of locoregional and distant metastases in oropharyngeal squamous cell carcinoma
por: Barber, Brittany R, et al.
Publicado: (2013) -
Radiomics and Machine Learning for Radiotherapy in Head and Neck Cancers
por: Giraud, Paul, et al.
Publicado: (2019)