Cargando…
A Deep Neural Network-Based Feature Fusion for Bearing Fault Diagnosis
This paper presents a novel method for fusing information from multiple sensor systems for bearing fault diagnosis. In the proposed method, a convolutional neural network is exploited to handle multiple signal sources simultaneously. The most important finding of this paper is that a deep neural net...
Autores principales: | Hoang, Duy Tang, Tran, Xuan Toa, Van, Mien, Kang, Hee Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795921/ https://www.ncbi.nlm.nih.gov/pubmed/33401511 http://dx.doi.org/10.3390/s21010244 |
Ejemplares similares
-
Bearing Fault Diagnosis Using a Particle Swarm Optimization-Least Squares Wavelet Support Vector Machine Classifier
por: Van, Mien, et al.
Publicado: (2020) -
Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network
por: Li, Hongmei, et al.
Publicado: (2019) -
An Ensemble Deep Convolutional Neural Network Model with Improved D-S Evidence Fusion for Bearing Fault Diagnosis
por: Li, Shaobo, et al.
Publicado: (2017) -
Bearing Fault Feature Extraction and Fault Diagnosis Method Based on Feature Fusion
por: Zhu, Huibin, et al.
Publicado: (2021) -
Fault Diagnosis of Motor Bearings Based on a One-Dimensional Fusion Neural Network
por: Jian, Xianzhong, et al.
Publicado: (2019)