Cargando…

Fabrication of a Plasmonic Nanoantenna Array Using Metal Deposition on Polymer Nanoimprinted Nanodots for an Enhanced Fluorescence Substrate

A simple and cost-effective method is proposed herein for a plasmonic nanoantenna array (PNAA) for the fabrication of metal-enhanced fluorescence (MEF) substrates in which fluorophores interact with the enhanced electromagnetic field generated by a localized surface plasmon to provide a higher fluor...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Jun, Abbas, Naseem, Lee, Seongmin, Yeom, Jeongwoo, Asgar, Md Ali, Badshah, Mohsin Ali, Lu, Xun, Kim, Young Kyu, Kim, Seok-Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795982/
https://www.ncbi.nlm.nih.gov/pubmed/33375587
http://dx.doi.org/10.3390/polym13010048
_version_ 1783634573337296896
author Kim, Jun
Abbas, Naseem
Lee, Seongmin
Yeom, Jeongwoo
Asgar, Md Ali
Badshah, Mohsin Ali
Lu, Xun
Kim, Young Kyu
Kim, Seok-Min
author_facet Kim, Jun
Abbas, Naseem
Lee, Seongmin
Yeom, Jeongwoo
Asgar, Md Ali
Badshah, Mohsin Ali
Lu, Xun
Kim, Young Kyu
Kim, Seok-Min
author_sort Kim, Jun
collection PubMed
description A simple and cost-effective method is proposed herein for a plasmonic nanoantenna array (PNAA) for the fabrication of metal-enhanced fluorescence (MEF) substrates in which fluorophores interact with the enhanced electromagnetic field generated by a localized surface plasmon to provide a higher fluorescence signal. The PNAA is fabricated by the deposition of a silver (Ag) layer on an ultraviolet (UV) nanoimprinted nanodot array with a pitch of 400 nm, diameter of 200 nm, and height of 100 nm. During deposition, raised Ag nanodisks and a lower Ag layer are, respectively, formed on the top and bottom of the imprinted nanodot array, and the gap between these Ag layers acts as a plasmonic nanoantenna. Since the thickness of the gap within the PNAA is influenced by the thickness of Ag deposition, the effects of the latter upon the geometrical properties of the fabricated PNAA are examined, and the electromagnetic field intensity distributions of PNAAs with various Ag thicknesses are simulated. Finally, the fluorescence enhancement factor (FEF) of the fabricated PNAA MEF substrate is measured using spotted Cy5-conjugated streptavidin to indicate a maximum enhancement factor of ~22× for the PNAA with an Ag layer thickness of 75 nm. The experimental results are shown to match the simulated results.
format Online
Article
Text
id pubmed-7795982
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-77959822021-01-10 Fabrication of a Plasmonic Nanoantenna Array Using Metal Deposition on Polymer Nanoimprinted Nanodots for an Enhanced Fluorescence Substrate Kim, Jun Abbas, Naseem Lee, Seongmin Yeom, Jeongwoo Asgar, Md Ali Badshah, Mohsin Ali Lu, Xun Kim, Young Kyu Kim, Seok-Min Polymers (Basel) Article A simple and cost-effective method is proposed herein for a plasmonic nanoantenna array (PNAA) for the fabrication of metal-enhanced fluorescence (MEF) substrates in which fluorophores interact with the enhanced electromagnetic field generated by a localized surface plasmon to provide a higher fluorescence signal. The PNAA is fabricated by the deposition of a silver (Ag) layer on an ultraviolet (UV) nanoimprinted nanodot array with a pitch of 400 nm, diameter of 200 nm, and height of 100 nm. During deposition, raised Ag nanodisks and a lower Ag layer are, respectively, formed on the top and bottom of the imprinted nanodot array, and the gap between these Ag layers acts as a plasmonic nanoantenna. Since the thickness of the gap within the PNAA is influenced by the thickness of Ag deposition, the effects of the latter upon the geometrical properties of the fabricated PNAA are examined, and the electromagnetic field intensity distributions of PNAAs with various Ag thicknesses are simulated. Finally, the fluorescence enhancement factor (FEF) of the fabricated PNAA MEF substrate is measured using spotted Cy5-conjugated streptavidin to indicate a maximum enhancement factor of ~22× for the PNAA with an Ag layer thickness of 75 nm. The experimental results are shown to match the simulated results. MDPI 2020-12-25 /pmc/articles/PMC7795982/ /pubmed/33375587 http://dx.doi.org/10.3390/polym13010048 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kim, Jun
Abbas, Naseem
Lee, Seongmin
Yeom, Jeongwoo
Asgar, Md Ali
Badshah, Mohsin Ali
Lu, Xun
Kim, Young Kyu
Kim, Seok-Min
Fabrication of a Plasmonic Nanoantenna Array Using Metal Deposition on Polymer Nanoimprinted Nanodots for an Enhanced Fluorescence Substrate
title Fabrication of a Plasmonic Nanoantenna Array Using Metal Deposition on Polymer Nanoimprinted Nanodots for an Enhanced Fluorescence Substrate
title_full Fabrication of a Plasmonic Nanoantenna Array Using Metal Deposition on Polymer Nanoimprinted Nanodots for an Enhanced Fluorescence Substrate
title_fullStr Fabrication of a Plasmonic Nanoantenna Array Using Metal Deposition on Polymer Nanoimprinted Nanodots for an Enhanced Fluorescence Substrate
title_full_unstemmed Fabrication of a Plasmonic Nanoantenna Array Using Metal Deposition on Polymer Nanoimprinted Nanodots for an Enhanced Fluorescence Substrate
title_short Fabrication of a Plasmonic Nanoantenna Array Using Metal Deposition on Polymer Nanoimprinted Nanodots for an Enhanced Fluorescence Substrate
title_sort fabrication of a plasmonic nanoantenna array using metal deposition on polymer nanoimprinted nanodots for an enhanced fluorescence substrate
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795982/
https://www.ncbi.nlm.nih.gov/pubmed/33375587
http://dx.doi.org/10.3390/polym13010048
work_keys_str_mv AT kimjun fabricationofaplasmonicnanoantennaarrayusingmetaldepositiononpolymernanoimprintednanodotsforanenhancedfluorescencesubstrate
AT abbasnaseem fabricationofaplasmonicnanoantennaarrayusingmetaldepositiononpolymernanoimprintednanodotsforanenhancedfluorescencesubstrate
AT leeseongmin fabricationofaplasmonicnanoantennaarrayusingmetaldepositiononpolymernanoimprintednanodotsforanenhancedfluorescencesubstrate
AT yeomjeongwoo fabricationofaplasmonicnanoantennaarrayusingmetaldepositiononpolymernanoimprintednanodotsforanenhancedfluorescencesubstrate
AT asgarmdali fabricationofaplasmonicnanoantennaarrayusingmetaldepositiononpolymernanoimprintednanodotsforanenhancedfluorescencesubstrate
AT badshahmohsinali fabricationofaplasmonicnanoantennaarrayusingmetaldepositiononpolymernanoimprintednanodotsforanenhancedfluorescencesubstrate
AT luxun fabricationofaplasmonicnanoantennaarrayusingmetaldepositiononpolymernanoimprintednanodotsforanenhancedfluorescencesubstrate
AT kimyoungkyu fabricationofaplasmonicnanoantennaarrayusingmetaldepositiononpolymernanoimprintednanodotsforanenhancedfluorescencesubstrate
AT kimseokmin fabricationofaplasmonicnanoantennaarrayusingmetaldepositiononpolymernanoimprintednanodotsforanenhancedfluorescencesubstrate