Cargando…

Respiratory Monitoring Based on Tracheal Sounds: Continuous Time-Frequency Processing of the Phonospirogram Combined with Phonocardiogram-Derived Respiration

Patients with central respiratory paralysis can benefit from diaphragm pacing to restore respiratory function. However, it would be important to develop a continuous respiratory monitoring method to alert on apnea occurrence, in order to improve the efficiency and safety of the pacing system. In thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Xinyue, Azevedo Coste, Christine, Nierat, Marie-Cécile, Renaux, Serge, Similowski, Thomas, Guiraud, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795986/
https://www.ncbi.nlm.nih.gov/pubmed/33375762
http://dx.doi.org/10.3390/s21010099
Descripción
Sumario:Patients with central respiratory paralysis can benefit from diaphragm pacing to restore respiratory function. However, it would be important to develop a continuous respiratory monitoring method to alert on apnea occurrence, in order to improve the efficiency and safety of the pacing system. In this study, we present a preliminary validation of an acoustic apnea detection method on healthy subjects data. Thirteen healthy participants performed one session of two 2-min recordings, including a voluntary respiratory pause. The recordings were post-processed by combining temporal and frequency detection domains, and a new method was proposed—Phonocardiogram-Derived Respiration (PDR). The detection results were compared to synchronized pneumotachograph, electrocardiogram (ECG), and abdominal strap (plethysmograph) signals. The proposed method reached an apnea detection rate of 92.3%, with 99.36% specificity, 85.27% sensitivity, and 91.49% accuracy. PDR method showed a good correlation of 0.77 with ECG-Derived Respiration (EDR). The comparison of R-R intervals and S-S intervals also indicated a good correlation of 0.89. The performance of this respiratory detection algorithm meets the minimal requirements to make it usable in a real situation. Noises from the participant by speaking or from the environment had little influence on the detection result, as well as body position. The high correlation between PDR and EDR indicates the feasibility of monitoring respiration with PDR.