Cargando…

An Ultra-Short Baseline Underwater Positioning System with Kalman Filtering

The ultra-short baseline underwater positioning is one of the most widely applied methods in underwater positioning and navigation due to its simplicity, efficiency, low cost, and accuracy. However, there exists environmental noise, which has negative impacts on the positioning accuracy during the u...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Qinghua, Yan, Xiaozhen, Ju, Chunyu, Chen, Yunsai, Luo, Zhenhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7796008/
https://www.ncbi.nlm.nih.gov/pubmed/33379311
http://dx.doi.org/10.3390/s21010143
Descripción
Sumario:The ultra-short baseline underwater positioning is one of the most widely applied methods in underwater positioning and navigation due to its simplicity, efficiency, low cost, and accuracy. However, there exists environmental noise, which has negative impacts on the positioning accuracy during the ultra-short baseline (USBL) positioning process, which results in a large positioning error. The positioning result may lead to wrong decision-making in the latter processing. So, it is necessary to consider the error sources, and take effective measurements to minimize the negative impact of the noise. In our work, we propose a USBL positioning system with Kalman filtering to improve the positioning accuracy. In this system, we first explore a new kind of element array to accurately capture the acoustic signals from the object. We then organically combine the Kalman filters with the array elements to filter the acoustic signals, using the minimum mean-square error rule to obtain accurate acoustic signals. We got the high-precision phase difference information based on the non-equidistant quaternary original array and the phase difference acquisition mechanism. Finally, on account of the obtained accurate phase difference information and position calculation, we determined the coordinates of the underwater target. Comprehensive evaluation results demonstrate that our proposed USBL positioning method based on the Kalman filter algorithm can effectively enhance the positioning accuracy.